Respuestas a los problemas impares del capítulo 1

Proposiciones y conectivos lógicos

1.1 a y c.

1.3

p	q	$\neg p$	$\neg q$	$\neg p \lor \neg q$	$\neg(\neg p \lor \neg q)$
V	V	F	F	F	V
V	F	F	V	V	F
\overline{F}	V	V	F	V	F
F	F	V	V	V	F

1.5

p	q	r	$\neg q$	$p \land \neg q$	$(p \land \neg q) \lor r$
V	V	V	F	F	V
V	V	F	F	F	F
V	F	V	V	V	V
F	V	V	F	F	V
V	\overline{F}	F	V	V	V
F	V	F	F	F	F
\overline{F}	\overline{F}	V	V	F	V
F	F	F	V	F	F

Implicación y equivalencia lógica

1.7

p	q	$p \wedge q$	$\neg(p \land q)$	$\neg p$	$\neg q$	$\neg p \lor \neg q$
V	V	V	F	F	F	F
V	F	F	V	F	V	V
\overline{F}	V	F	V	V	F	V
\overline{F}	F	F	V	V	V	V

Obsérvese que las columnas cuatro y siete, correspondientes a las proposiciones $\neg(p \land q)$ y $\neg p \lor \neg q$, coinciden, por lo que estas proposiciones son equivalentes.

1.9

p	q	$p \lor q$	$p \wedge q$	$\neg (p \land q)$	$(p \lor q) \land \neg (p \land q)$
V	V	V	V	F	F
V	F	V	F	V	V
F	V	V	F	V	V
F	F	F	F	V	F

Reglas de inferencia

1.11

p	q	$p \rightarrow q$	$(p \to q) \land q$	$[(p \to q) \land q] \to p$
V	V	V	V	V
V	F	F	F	V
\overline{F}	\overline{V}	V	V	F
F	F	V	F	V

Conjuntos

1.13 (a) verdadera; (b) falsa; (c) verdadera; (d) verdadera.

Operaciones con conjuntos

1.15
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C) = (A \cup B) \cap C$$
.

$$1.17 \ (A \cap B) \cap (A - B) = (A \cap B) \cap (A \cap B^c) = A \cap (B \cap B^c) = A \cap \emptyset = \emptyset.$$

1.19 Por ejemplo, si
$$A = \{1, 2, 3\}$$
, $B = \{1, 4\}$, $C = \{2, 5\}$, entonces $A \cup (B - C) = \{1, 2, 3, 4\}$ y $(A \cup B) - (A \cup C) = \{4\}$.

- 1.21 Supongamos que $A \subseteq B$. Si $x \in B^c$, entonces $x \notin B$, por lo tanto $x \notin A$, es decir $x \in A^c$, de ahí que $B^c \subseteq A^c$. Supongamos ahora que $B^c \subseteq A^c$. Si $x \in A$ entonces $x \notin B^c$, es decir, $x \in B$, por lo tanto $A \subseteq B$.
- 1.23 Falso, por ejemplo, si $A = \{1, 2\}, B = \{2, 3\}, C = \{1, 3\},$ entonces $A C = \{2\} = B C$, pero $A \neq C$.
- 1.25 Por ejemplo, si $A = \{1, 2\}, B = \{1, 3\}, C = \{2, 3\},$ entonces $A \cup B = \{1, 2, 3\} = A \cup C$, pero $B \neq C$.

$$1.27 \ (B-A)\cap (C-A) = (B\cap A^c)\cap (C\cap A^c) = (B\cap C)\cap A^c \subseteq A\cap A^c = \emptyset.$$

1.29 Si $C \in \wp(A \cap B)$, entonces $C \subseteq A \cap B$, de ahí que $C \subseteq A$ y $C \subseteq B$, por lo tanto $C \in \wp(A)$ y $C \in \wp(B)$, es decir, $C \in \wp(A) \cap \wp(B)$.

Ejercicios adicionales

- 1.31 Si x es de la tribu A, entonces sería verdad que z es de la tribu A, pero entonces la afirmación de z sería falsa, lo cual no es posible. Por lo tanto x es de la tribu B, de ahí que su afirmación sea falsa, y por lo tanto z es de la tribu B.
- 1.33 (a)

p	q	$p \wedge q$	$\neg (p \land q)$
V	V	V	F
V	F	F	V
F	V	F	V
\overline{F}	F	F	V

Que coincide con la tabla de verdad del operador de Sheffer.

- (b) Por el inciso anterior, $p \uparrow p = \neg(p \land p) = \neg p$.
- (c) Por el inciso (b), $(p \uparrow p) \uparrow (q \uparrow q) = (\neg p) \uparrow (\neg q) = \neg[(\neg p) \land (\neg q)] = p \lor q$.
- (d) Por el inciso (b), $(p \uparrow q) \uparrow (p \uparrow q) = \neg(p \uparrow q) = \neg(\neg(p \land q)) = p \land q$.

$$1.35\ (A-B)\cap C=(A\cap B^c)\cap C=(A\cap C)\cap B^c=(A\cap C)-B.$$

1.37
$$A - (B \cap C) = A \cap (B \cap C)^c = A \cap (B^c \cup C^c) = (A \cap B^c) \cup (A \cap C^c) = (A - B) \cup (A - C).$$

1.39 Si $C \in \wp(A)$ entonces $C \subseteq A$ y por lo tanto $C \subseteq B$, de ahí que $C \in \wp(B)$.