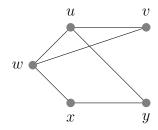
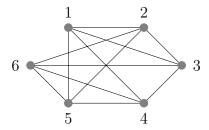
Respuestas a los problemas impares del capítulo 15

Grafos y subgrafos

15.1

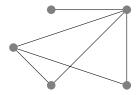


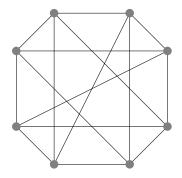
15.3



15.5 Si la bipartición de V está dada por $X = \{x_1, \ldots, x_r\}$ y $Y = \{y_1, \ldots, y_s\}$, podemos enumerar los vértices como $\{v_1, \ldots, v_{r+s}\}$, donde $v_i = x_i$ para toda $i = 1, \ldots, r$ y $v_{r+j} = y_j$ para toda $j = 1, \ldots, s$.

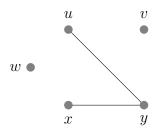
15.7



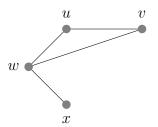


15.11 Por el teorema 15.1, $2|E| = \sum_{v \in V} \ d(v) = nk.$

15.13 (a)



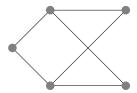
(b)



15.15 Sea $G=(X\cup Y,E)$ un grafo bipartito y sea $V'\subseteq (X\cup Y)$. Definamos $X'=V'\cap X$ y $Y'=V'\cap Y$. Es claro que $V'=X'\cup Y'$ y que $X'\cap Y'=\emptyset$, además toda arista de G[V'] debe tener un extremo en X' y otro extremo en Y', por lo que G[V'] es bipartita.

Caminos y grafos conexos

15.17



- 15.19 Los vértices de corte son f y g. El único puente es la arista que une los vértices f y g.
- 15.21 Si $d(u,v)=\infty$ o $d(v,w)=\infty$ el resultado es trivialmente cierto. Supongamos ahora que $d(u,v)<\infty$ y $d(v,w)<\infty$. Sea P la (u,w)-trayectoria más corta y sea v otro vértice.

Caso 1. Si $v \in V(P)$ entonces la (u, v)-sección de P es la (u, v)-trayectoria más corta y la (v, w)-sección es la (v, w)-trayectoria más corta. Por lo tanto d(u, w) = d(u, v) + d(v, w).

Caso 2. Si $v \notin V(P)$ sea Q la (u,v)-trayectoria más corta y sea R la (v,w)-trayectoria más corta. Por lo tanto $Q \circ R$ es una (u,w)-trayectoria. De ahí que la longitud de P es menor o igual que la longitud de $Q \circ R$, es decir, $d(u,w) \leq d(u,v) + d(v,w)$.

Grafos isomorfos

- 15.23 El primer grafo tiene un camino de longitud 8, mientras que la longitud máxima de un camino en el segundo grafo es seis, por lo tanto los grafos no son isomorfos.
- 15.25 Sea φ un isomorfismo de G en H. Observemos que

$$uv \in E(G^c) \iff uv \notin E(G) \iff \varphi(u)\varphi(v) \notin E(H) \iff \varphi(u)\varphi(v) \in E(H^c).$$

Por lo tanto φ también es un isomorfismo de G^c en H^c . Recíprocamente, si φ es un isomorfismo de G^c en H^c entonces φ es un isomorfismo de G en H.

15.27 Sean $\varphi(u), \varphi(v) \in V(H)$. Como G es conexo existe un (u, v)-camino en G, de ahí que, por el ejercicio anterior, existe un $(\varphi(u), \varphi(v))$ -camino en H. Por lo tanto H es conexo.

15.29

$$\left(\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0
\end{array}\right)$$

15.31 Como $W = (v_1, \ldots, v_k)$ es un camino en G entonces $v_i v_{i+1} \in E(G)$ para todo $i = 1, \ldots, k-1$. Como φ es un isomorfismo de G en H entonces $\varphi(v_i)\varphi(v_{i+1}) \in E(G)$, de ahí que $\varphi(W) = (\varphi(v_1), \ldots, \varphi(v_k))$ es un camino en H.

15.33 Isomorfo a C_n .

Paseos Eulerianos

- 15.35 El grafo de Petersen no es Euleriano porque es 3-regular.
- 15.37 K_n es n-1-regular, por lo tanto K_n es Euleriano si y sólo si n es impar.

Ejercicios adicionales

- 15.39 Cada vértice es un arreglo ordenado de longitud k de ceros y unos. Como en cada entrada tenemos 2 posibilidades tenemos en total 2^k vértices. Sea X el conjunto de vértices que tienen un número impar de unos y sea Y el conjunto de vértices que tienen un número par de unos. Como dos vértices son adyacentes si y sólo si difieren en exactamente un elemento, entonces es claro que cada arista tiene un extremo en X y un extremo en Y. Por lo tanto Q_k es bipartito. Observemos además que cada vértice de Q_k tiene grado k, por lo tanto $2|E(Q_k)| = k2^k$, de ahí que $|E(Q_k)| = k2^{k-1}$.
- 15.41 Como |E| = k|X| y |E| = k|Y| y $k \neq 0$, se sigue que |X| = |Y|.
- 15.43 Sea $uv \in E$. Como G tiene cuello 4 entonces $N(u) \cap N(v) = \emptyset$. Como además |N(u)| = |N(v)| = k, se sigue que $|V| \ge |N(u) \cup N(v)| = 2k$.
- 15.45 Si G es autocomplementario entonces $|E(G)|=|E(G^c)|$. Como además

$$|E(G)| + |E(G^c)| = \binom{n}{2},$$

se sigue que |E(G)|=n(n-1)/4. Es decir, $n^2\equiv n\pmod 4$. Pero esto sólo es posible si n=4k o n=4k+1 para algún entero k.