Respuestas a los problemas impares del capítulo 4

Producto cartesiano

4.1 Supongamos que $C \times D \subseteq A \times B$. Si $c \in C$ y $d \in D$, entonces $(c,d) \in C \times D$, y por lo tanto $(c,d) \in A \times B$, de ahí que $c \in A$ y $d \in B$, por lo tanto $C \subseteq A$ y $D \subseteq B$. Recíprocamente, supongamos que $C \subseteq A$ y $D \subseteq B$ y sea $(c,d) \in C \times D$. Por lo tanto $c \in C$ y $d \in D$, y de ahí que $c \in A$ y $d \in B$, por lo tanto $(c,d) \in A \times B$, lo cual prueba que $C \times D \subseteq A \times B$.

4.3

$$(x,y) \in (A \cap B) \times (C \cap D) \quad \Leftrightarrow \quad x \in A \cap B, \ y \in C \cap D$$
$$\Leftrightarrow \quad (x,y) \in A \times C \quad \text{y} \quad (x,y) \in B \times D$$
$$\Leftrightarrow \quad (x,y) \in (A \times C) \cap (B \times D).$$

Funciones

- 4.5 (b) y (d).
- 4.7 (a) Si $x \notin \mathbb{Z}$, existe $n \in \mathbb{Z}$ tal que n < x < n+1. Por lo tanto $\lfloor x \rfloor = n$, $\lceil x \rceil = n+1$. De ahí que $\lceil x \rceil \lfloor x \rfloor = (n+1) n = 1$.
 - (b) Si $x \notin \mathbb{Z}$, existe $n \in \mathbb{Z}$ tal que n < x < n+1. De ahí que n-1 < x-1 < n y n+1 < x+1 < n+2. Por lo tanto x-1 < n < x < n+1 < x+1, y de ahí que

$$x-1 < \lfloor x \rfloor < x < \lceil x \rceil < x+1.$$

Por otra parte, si $x = n \in \mathbb{Z}$, entonces $|x| = n = \lceil x \rceil$. Por lo que

$$x-1 < \lfloor x \rfloor = x = \lceil x \rceil < x+1.$$

- 4.9 (a) $\Psi_{A^c}(x) = 1 \Leftrightarrow x \in A^c \Leftrightarrow x \notin A \Leftrightarrow \Psi_A(x) = 0 \Leftrightarrow 1 \Psi_A(x) = 1.$
 - (b) $\Psi_{A-B} = \Psi_{A \cap B^c} = \Psi_A \Psi_{B^c} = \Psi_A (1 \Psi_B) = \Psi_A \Psi_A \Psi_B$.

4.11

$$\begin{split} \Psi_{(A \oplus B) \oplus C} &= \Psi_{A \oplus B} + \Psi_C - 2\Psi_{A \oplus B} \Psi_C \\ &= (\Psi_A + \Psi_B - 2\Psi_A \Psi_B) + \Psi_C - 2(\Psi_A + \Psi_B - 2\Psi_A \Psi_B) \Psi_C \\ &= \Psi_A + \Psi_B + \Psi_C - 2\Psi_A \Psi_B - 2\Psi_A \Psi_C - 2\Psi_B \Psi_C + 4\Psi_A \Psi_B \Psi_C. \end{split}$$

Por otra parte,

$$\begin{split} \Psi_{A \oplus (B \oplus C)} &= \Psi_A + \Psi_{B \oplus C} - 2\Psi_A \Psi_{B \oplus C} \\ &= \Psi_A + (\Psi_B + \Psi_C - 2\Psi_B \Psi_C) - 2\Psi_A (\Psi_B + \Psi_C - 2\Psi_B \Psi_C) \\ &= \Psi_A + \Psi_B + \Psi_C - 2\Psi_B \Psi_C - 2\Psi_A \Psi_B - 2\Psi_A \Psi_C + 4\Psi_A \Psi_B \Psi_C. \end{split}$$

Por lo tanto $(A \oplus B) \oplus C = A \oplus (B \oplus C)$.

- 4.13 (a) Supongamos que existe $x \in f^{-1}(\emptyset)$. Por lo tanto $f(x) \in \emptyset$, lo cual no es posible. Por lo tanto $f^{-1}(\emptyset) = \emptyset$.
 - (b) Si $a \in f^{-1}(V)$, entonces $f(a) \in V$. Como $V \subseteq W$, por lo tanto $f(a) \in W$, de ahí que $a \in f^{-1}(W)$, con lo cual concluimos que $f^{-1}(V) \subseteq f^{-1}(W)$.
 - (c) $a \in f^{-1}(V \cap W) \Leftrightarrow f(a) \in V \cap W \Leftrightarrow f(a) \in V \text{ y } f(a) \in W \Leftrightarrow a \in f^{-1}(V) \text{ y } a \in f^{-1}(W) \Leftrightarrow a \in f^{-1}(V) \cap f^{-1}(W).$
 - $\begin{array}{lll} (d) & a \in f^{-1}(V \cup W) & \Leftrightarrow & f(a) \in V \cup W & \Leftrightarrow & f(a) \in V & \text{o} & f(a) \in W \\ W \Leftrightarrow & a \in f^{-1}(V) & \text{o} & a \in f^{-1}(W) & \Leftrightarrow & a \in f^{-1}(V) \cup f^{-1}(W). \end{array}$

Funciones biyectivas

- 4.15 $f(n) = f(m) \Rightarrow 5n 2 = 5m 2 \Rightarrow 5n = 5m \Rightarrow n = m$. Por lo tanto f es inyectiva. No es suprayectiva, porque, por ejemplo, $f(n) = 5n 2 \neq 0$ para todo $n \in \mathbb{N}$.
- 4.17 No es inyectiva, porque f(-1) = 1 = f(1). Tampoco es suprayectiva, porque $f(n) \neq -1$, para todo $n \in \mathbb{Z}$.
- 4.19 No es inyectiva, porque por ejemplo, f(1,2) = f(2,1). Si es suprayectiva, porque si $m \in \mathbb{Z}$, entonces f(1,m) = m.

Composición de funciones

- 4.21 Sea $x \in A$. Por lo tanto $(h \circ g) \circ f(x) = (h \circ g)(f(x)) = h(g(f(x)))$. Por otra parte, $h \circ (g \circ f)(x) = h(g \circ f(x)) = h(g(f(x)))$. De ahí que $(h \circ g) \circ f = h \circ (g \circ f)$.
- 4.23 f(a) = f(b) implica que g(f(a)) = g(f(b)). Es decir, $g \circ f(a) = g \circ f(b)$. Como $g \circ f$ es inyectiva se sigue que a = b, y por lo tanto f es inyectiva.
- 4.25 Sea $c \in C$. Como $g \circ f$ es suprayectiva, existe $a \in A$ tal que $g \circ f(a) = c$. Escribiendo b = f(a), tenemos que g(b) = g(f(a)) = c, por lo tanto g es suprayectiva.
- 4.27 $(g \circ f) \circ (f^{-1} \circ g^{-1})(x) = g(f(f^{-1}(g^{-1}(x)))) = g(g^{-1}(x)) = x$. Análogamente $(f^{-1} \circ g^{-1}) \circ (g \circ f)(x) = f^{-1}(g^{-1}(g(f(x)))) = f^{-1}(f(x)) = x$. Por lo tanto $f^{-1} \circ g^{-1} = (g \circ f)^{-1}$.

Conjuntos finitos

- 4.29 Para cada k = 1, ..., n, sea f(k) el número de amigos de la persona k. Supongamos que f es inyectiva, por lo tanto f(1), f(2), ..., f(n) son n números distintos del conjunto $\{0, 1, ..., n-1\}$, por lo tanto existen i, j tales que f(i) = 0 y f(j) = n-1, lo cual significa que i no conoce a nadie del grupo y j conoce a todos los del grupo, lo cual no es posible.
- 4.31 $A = (A-B) \cup B$. Como $(A-B) \cap B = \emptyset$, por lo tanto |A| = |A-B| + |B| y de ahí que |A-B| = |A| |B|.
- 4.33 Por inducción sobre m. Si m=1 el resultado es trivialmente cierto. Supongamos que

$$|A_1 \times \cdots \times A_m| = |A_1| \cdots |A_m|.$$

Por lo tanto

$$|A_1 \times \cdots \times A_m \times A_{m+1}| = |A_1 \times \cdots \times A_m||A_{m+1}|$$

$$= |A_1| \cdots |A_m| |A_{m+1}|.$$

4.35 3^5 tiene 6 divisores positivos, 7^6 tiene 7 divisores, 11^3 tiene 4 divisores y 13^2 tiene 3 divisores. Por lo tanto, por el principio del producto, $3^5 \cdot 7^6 \cdot 11^3 \cdot 13^2$ tiene $6 \cdot 7 \cdot 4 \cdot 3$ divisores positivos.

- 4.37 Hay dos posibilidades para cada posición, por lo que, por el principio del producto hay 2^n palabras.
- $4.39 \ 4^{25}$.
- 4.41 (a) 4!3!2! = 288. (b) 3!(4!3!2!) = 1728, porque hay 3! casos posibles similares a los del inciso anterior.

Principio de la pichonera

- 4.43 Si a lo más 3 personas nacen en el mismo mes tendríamos a lo más 36 personas.
- 4.45 51.
- 4.47 Sea n el número de jugadores. Cada jugador tiene al menos una victoria y a lo más n-1 victorias, es decir, hay n-1 resultados posibles, por lo que debe haber 2 jugadores con el mismo número de victorias.

Conjuntos infinitos

- 4.49 Sea A el conjunto de enteros pares y sea B el conjunto de enteros impares. Definamos $f:A\to B$ como f(a)=a+1 (obsérvese que como a es par entonces a+1 es impar). Si f(a)=f(b) entonces a+1=b+1 y de ahí que a=b. Por lo tanto f es inyectiva. Además si b es un entero impar entonces b-1 es par y además f(b-1)=b, por lo tanto f es biyectiva.
- 4.51 Sea A el conjunto de enteros pares y B el conjunto de enteros impares. Ambos conjuntos son infinitos, sin embargo, $A \cap B = \emptyset$ es finito.
- 4.53 Sea P el conjunto de numeros primos. Como $P \subseteq \mathbb{N}$ y \mathbb{N} es numerable, se sigue que P es a lo más numerable. Como además P es infinito entonces tiene que ser numerable.

Operaciones binarias

4.55 No, por ejemplo $\sqrt{2} \in \mathbb{I}$, pero $\sqrt{2}\sqrt{2} = 2 \in \mathbb{Q}$.

4.57 No es asociativa, por ejemplo, (2*3)*4 = (6+1)*4 = 28+1 = 29, pero 2*(3*4) = 2*(12+1) = 26+1 = 27. Es conmutativa porque a*b = ab+1 = ba+1 = b*a.

4.59

$$(a*b)*c = \left(\frac{ab}{2}\right)*c = \frac{(ab)c}{4} = \frac{a(bc)}{4} = a*\left(\frac{bc}{2}\right) = a*(b*c),$$

por lo tanto * es asociativa. También

$$a * b = \frac{ab}{2} = \frac{ba}{2} = b * a,$$

por lo tanto * es conmutativa.

4.61 **4.6.**

*	a	b	С	d
a	b	c	a	b
b	c	a	\mathbf{c}	b
c	a	\mathbf{c}	d	a
d	b	b	a	\mathbf{c}

- 4.63 [(a,b)*(c,d)]*(e,f) = (ad+bc,bd)*(e,f) = (adf+bcf+bde,bdf). Por otra parte, (a,b)*[(c,d)*(e,f)] = (a,b)*(cf+de,df) = (adf+bcf+bde,bdf). Por lo tanto la operación es asociativa. También es conmutativa, porque (c,d)*(a,b) = (cb+da,db) = (ad+bc,bd) = (a,b)*(c,d).
- 4.65 Determine el más pequeño subconjunto A de \mathbb{Z} tal que $3 \in A$ y la suma es una operación binaria en A.
- 4.65 Sea $A = \{3n \mid n \in \mathbb{Z}\}$. Por lo tanto $3 = 3(1) \in A$. Además la suma usual es una operación binaria en A, porque $3n + 3m = 3(n + m) \in A$. Por último, si $B \subseteq \mathbb{Z}$ es tal que $3 \in B$ y la suma es cerrada, entonces $3 + \cdots + 3 = 3n \in B$. Por lo tanto $A \subseteq B$.

4.67
$$A + B = (a_{ij} + b_{ij}) = (b_{ij} + a_{ij}) = B + A.$$

4.69

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$