

IIC2252 - Matemáticas Discretas

Guía 3: Relaciones

- 1. Demuestre o refute la siguiente afirmación: "Si R es una relación simétrica y transitiva entonces también es refleja".
- 2. Dé un ejemplo de relaciones que sean
 - a) simétrica y refleja pero no transitiva.
 - b) refleja y transitiva pero no simétrica.
 - c) simétrica y transitiva pero no refleja.
- 3. ϕ es una relación (ya que es subconjunto de cualquier conjunto). ¿Qué propiedades cumple ϕ como relación?

(Ayuda: Sin pérdida de generalidad, puede suponer que ϕ es una relación sobre un conjunto finito)

- 4. Sea A un conjunto con n elementos.
 - a) ¿Cuántas relaciones reflejas se pueden crear con elementos de A?
 - b) ¿Cuántas relaciones simétricas se pueden crear con elementos de A?
 - c) ¿Cuántas relaciones antisimétricas se pueden crear con elementos de A?
- 5. Sea A un conjunto con n elementos y R una relación antisimétrica sobre A.
 - a) ¿Cuál es la máxima cantidad de pares ordenados que puede contener R?
 - b) ¿Cuantas relaciones antisimétricas distintas sobre A tienen exactamente esa cantidad de pares?
- 6. Para cada una de las siguientes relaciones determine si es refleja, simétrica, antisimétrica o transitiva, demostrando o dando un contraejemplo en cada caso.
 - a) $R_{//}$ sobre el conjunto de todas las rectas de \mathbb{R}^2 , tales que la recta l_1 está relacionada con la recta l_2 si y sólo si l_1 es paralela a l_2 ($l_1R_{//}l_2 \Leftrightarrow l_1//l_2$).
 - b) R_{\perp} sobre el conjunto de todas las rectas de \mathbb{R}^2 , tales que la recta l_1 está relacionada con la recta l_2 si y sólo si l_1 es perpendicular a l_2 ($l_1R_{\perp}l_2 \Leftrightarrow l_1\perp l_2$).
 - c) R sobre $\mathbb{N} \times \mathbb{N}$ tal que (a,b)R(c,d) si y sólo si $a \leq c$. (Note que en este último caso la relación R es subconjunto de $(\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N})$.)
 - d) R sobre $\mathbb{N} \times \mathbb{N}$ tal que (a, b)R(c, d) si y sólo si ocurre que a < b, o que a = b y $c \le d$.
- 7. ¿Qué puede decir de la relación $R_{//} \circ R_{\perp}$ (la composición de las relaciones $R_{//}$ y R_{\perp} definidas en el ejercicio anterior), qué propiedades cumple, cómo se compara con $R_{//}$ y con R_{\perp} , etc.?
- 8. Sea $f: A \to B$ una función cualquiera de A en B. Sea R una relación sobre A tal que xRy si y sólo si f(x) = f(y). Demuestre que R es refleja, simétrica y transitiva.

- 9. Demuestre o refute (de un contraejemplo) cada una de las siguiente afirmaciones. En cada caso R_1 y R_2 son relaciones sobre un conjunto A cualquiera.
 - a) Si R_1 y R_2 son simétricas entonces $R_1 \cap R_2$ es simétrica.
 - b) Si R_1 y R_2 son reflejas entonces $R_1 \cup R_2$ es refleja.
 - c) Si R_1 y R_2 son transitivas entonces $R_1 \cap R_2$ es transitiva.
 - d) Si R_1 y R_2 son transitivas entonces $R_1\circ R_2$ es transitiva.
- 10. Los siguientes ejercicios tienen que ver con teoremas de los apuntes.
 - a) Demuestre en forma directa (sólo usando las definiciones) el teorema 1.4.1.
 - b) Demuestre el teorema 1.4.2.
 - c) Demuestre el teorema 1.4.3.
 - d) Demuestre el teorema 1.4.1 como conclusión de los teoremas 1.4.3 y 1.4.2.