
How-To-Use-It-Manual

Stimulus Generation and Association Programs

Brown University Neural Modeling Group

Release 2.05

BSB and ASSOCIAT

James A. Anderson
Department of Cognitive and Linguistic Sciences

Brown University
Box 1978

Providence, RI 02912
James Anderson@brown.edu

October 30, 1994
October 24, 1997 (C version)

1 Introduction

This manual will tell you how to use a set of programs developed at the Depart-

ment of Cognitive and Linguistic Sciences, Brown University. The programs are

research programs designed to generate, maintain, learn, and use sets of stimuli

and matrices used in neural modelling research.

The programs were originally written in VMS Pascal to run on a VAX,

but are now also available in C to run under Unix. This document has been

modi�ed slightly to re
ect the latter version. There are two programs of major

interest. One is called ASSOCIAT and generates the matrices that associate

pairs of vectors. Actually, the internal representation of a matrix is in the

form of an array of C structures named Neuron, but acts mathematically like

a matrix. The other is a program with several parts called BSB. One part

generates stimuli which are large state vectors. These state vectors represent

strings of 25 characters in a 200 dimensional system. Once generated, the

state vectors can be associated together using ASSOCIAT. Another part realizes

the dynamics of the simple non-linear model called the `Brain-state-in-a-Box'.

(See Anderson, Silverstein, Ritz and Jones, 1977, Anderson and Mozer, 1981;

Anderson, 1986; and Anderson and Murphy, 1986; Anderson, 1993,1994)

1

2 Files

The programs BSB and ASSOCIAT need to be supplied with several �le names,

in order either to read or write the �les. The �le names are supplied as command

line arguments when the programs are run. Below are the commands to create

the stimulus �les, to create the matrix, and to run the demo.

./bsb fdis.stm gdis.stm tdis.stm

./associat fdis.stm gdis.stm ndis.neu

./bsb fdis.stm gdis.stm tdis.stm ndis.neu

The �rst generates the three .stm �les, the second uses these as input to

construct the .neu �le, and the third uses all four �les as input. (The initial ./

is only necessary if your path does not include the current directory.)

By convention, the input and output vectors are given the extension `.stm'

and the �le containing the matrix are given the extension `.neu'. As a general

point, the �les constructed with these programs can be quite large. In the 200

dimensional system the �les associated with the matrix are 324000 bytes long.

3 Making the Stimuli using BSB

The �rst step in making stimuli is to run BSB. Some initial information appears.

The general pattern of displays in BSB is to have status information on the top 5

lines of the screen and the command prompts on the bottom line. Since the au-

thor of these programs was in
uenced by UCSD Pascal at an impressionable age,

extensive use is made of self-documenting prompts. For example, `T)hreshold'

means that if `T' (or `t') is typed at the command prompt (`>') the threshold

interpretation parameter can be changed from its default. In general, typing a

single letter, followed by <Return> will cause an action. All commands can be

upper or lower case and most are protected to some extent (not totally!) against

erroneous inputs. Not all commands appear on the prompt lines, for reasons

of space, particularly for setting some of the less frequently used parameters in

the simulation.

Figure 1. Initial appearance of the screen.
|||||||

BSB Neural Net Programs. 3-89 B)SB. C)hange. E)xit. H)elp.

L)ist. M)ode. N)eurons. R)ead. S)ave. T)hreshold. W)rite.

Threshold: 0.5000 F File: 0 G File: 0 T File: 0

NO NEURON FILE. Display TF.

Initializing Files.

Reading neuron and stimulus files from disk.

Reading F file.

Reading G file.

Reading T file.

Reading neuron file (autoassociative).

2

C>

|||||||

At �rst, there are no �les present for BSB to work with. Let us assume you

want to create a series of stimuli for future use. The prompt line tells you how

many stimuli are present in the F File, the G File, and the T File. When the

program �rst appears, these values are all zero. F File and G File have the

customary meanings they have in our neural modelling literature: i.e. the F

File is the input set of state vectors and the G File is the output set of state

vectors. The T �le contains a set of `Test' vectors, usually partial input stimuli,

which are used to test the reconstructive and processing powers of the system.

Although this simple form of our programs only performs autoassociation,

(i.e., F=G), more complex versions can have di�erent input and output sets.

Input vectors are constructed from strings of characters. We will assume

the system is 200 dimensional. A character in the string is represented by its

ASCII number, i.e. `a' is 97, `5' is 53, `=' is 61, and so on. These numbers are

converted into binary representation, so `a' becomes `01100001'. Then the zeros

are replaced with minus ones, so we can maintain rough equality of numbers of

positive and negative elements which is convenient for the models, so the actual

internal representation of `a' is

`a' 7�! �1; 1; 1;�1;�1;�1;�1; 1:

Each character requires 8 vector elements, so a 200 dimensional system con-

tains enough elements for 25 characters. The parity bit is computed but not

used in the simulations at present. One reason for its presence, is that eight

bits allow the construction of `orthogonal' character representations, which can

sometimes be a convenience. If anyone wanted actually to use these programs

for anything substantial it is strongly recommended that a less arbitrary way of

coding letters be used. The state vectors contain single precision
oating point

numbers. Currently no more than 100 stimuli are allowed in any one �le but

this can be easily changed in the programs if necessary.

The technically inclined might like to know that stimuli are structures com-

posed of a string part and a numerical equivalent form:

/* Number_of_characters is related to Dimensionality of vectors */

#define Number_of_characters 25

#define Dimensionality 8*Number_of_characters

/* String_length refers to strings in the struct Stimulus.Name */

#define String_length 60 /* Must be > Number_of_characters */

typedef float Vector[Dimensionality];

typedef char String[String_length+1];

typedef struct {

String Name;

Vector Val;

} Stimulus;

3

The program will automatically look for the assigned stimulus and neuron

�les, and write its progress to the screen. If it doesn't �nd a �le, it will write

`Stimulus file not found' to the command line (i.e. the `C>' line). You may

have to watch carefully to see this line appear, and then disappear when the

next �le is read. The information at the top of the screen will also inform you

of progress. In the example, there are no stimuli in the F �le, G �le, and T �le

and this is noted in the third line on the screen. There is also a comment that

there is `NO NEURON FILE' on the fourth line.

To contruct a stimulus, type `C' from the �rst command level. This allows

you to `C)hange' the stimuli in the Files, which currently contain no stimulus

vectors. There are a number of options in `C)hange' to allow you to do various

useful things to the stimuli.

Suppose you want to make a new stimulus, say the �rst stimulus in the F

File. Type `R', for `Replace.' The program will then prompt you as to which

stimulus to replace. If you say `F1', the F[1] position in the F File (which

starts o� as all blanks) will be replaced with what you type and the appropriate

state vector will be constructed. Figure 2 shows the screen after the contents of

several vectors (f1, f2, and f3) have been replaced with ASCII character strings

and f4 is about to be replaced. (The names of f1, f2 and f3 were L)isted and

appear in the center of the screen.

Figure 2. Appearance after several f stimuli are made.
||||||{

Template: 1234567890123456789012345

New : This will be f4.

F[1]. This is stimulus f1.____ G[1].

F[2]. This is stimulus f2.____ G[2].

F[3]. And this is f3._________ G[3].

Replace which stimulus (set, number) : f4

||||||{

After you choose the stimulus to replace, `Template:' will appear at the

top of the screen. This is a set of 25 digits to serve as a reference marks for

constructing your stimulus. Underneath it is `New :' which is where the cursor

is and where you can write the new string. Any ASCII character except ` ' can be

placed here and will be represented as its appropriate byte. The ASCII character

` ' is represented in the vector as all zeros. If you hit return before the end of the

4

string, the vector will be �lled out with zeros, represented as underlines. If you

type in more than 25 characters, the excess will be ignored. Remember to use

<Delete> to remove characters from a line. Using the <Backspace> key

will insert `Ctrl-H' control characters into the line, causing erratic behavior of

the system that is di�cult to detect.

After you have typed in a few stimuli, you can see the current set by typing

`L' for `L)ist'. This will list either the F �le and the G File or the T �le and

the F �le, depending on which M)ode you have chosen. If there are more stimuli

than will �t on the screen you can move the �le B)ackwards or F)orwards by

typing `b' or `f'. Typing any other letter will return you to where you were.

The listing will remain on the screen for reference until new information has to

be written over it.

Brie
y the commands in C)hange are:

A)dd. Form a state vector as the sum of other state vectors. The resulting

vector values are divided by the number in the sum (i.e. the average of the

vectors is taken). The `.Name' of this type of state vector will appear in the

L)isting as, for example, `Sum f01 f02 f03' if it was the sum of stimulus

vectors F[1], F[2], and F[3]. Up to 16 vectors can be summed.

C)opy. Copy a state vector in one location to another location. The program

will prompt you for the stimulus to be copied and where to put it.

E)dit. This useful command will let you `edit' an already existing stimulus.

It will ask you for the stimulus number to edit. It will then give the old stimulus

as the template and let you type in the new stimulus right below it. When you

type <Return> the new stimulus vector will replace the old one.

I)ndividual values. Will show the individual element values. The elements

arranged on a byte per line with the number of the �rst and last elements on the

line numbered on left and right sides of the screen, and the ASCII interpretation

of the byte on the left. This command has its own command line.

C)hoose chooses which vector to show.

D)isplay displays the elements.

M)ode (see below).

Q)uit returns to C)hange.

T)hreshold (see below).

X)change allows you to change individual values.

L)ist. Lists the state vectors in the �les. If the display is in FG mode, the

F File and the G File will be listed. If the display is in T mode, the T File

and the F File will be listed. If more than 16 vectors are present, only sixteen

at a time will be shown. The 16 stimuli displayed can be shifted forward or

backward by typing `F' or `B'. L)ist can be left by typing any character other

than `F' or `B'.

M)ode. Change listing mode from displaying the F File and the G File to

displaying the T File and the F File or vice versa.

Q)uit. Return to wherever you entered C)hange from. C)hange can also be

entered from BSB.

R)eplace. Replace a member of one of the �les with a new stimulus.

5

S)ave. Save the �le of stimuli to a disk �le. The program will prompt you

as to which �le(s) you want to save. The saved �le will be given the names you

speci�ed on the command line. Don't forget to S)ave your work!

>>>The program does NOT automatically save new stimuli.<<<

T)emplate. Sometimes it is convenient to use a template other than digits

to make remembering what goes where easier. T)emplate allows you to make

your own string of ASCII characters to serve as a template, or to use a member

of one of the Stimulus �les as a model for a template.

4 Using ASSOCIAT to Make a New Learning

Matrix

Suppose you have constructed a set of F and G stimuli. You have saved them

to appropriate disk �les, and now wish to form the association matrix between

the input and output sets. This is done with the program named ASSOCIAT.

ASSOCIAT can sometimes take sizeable amounts of computer time on older

VAXes. Also the data �les ASSOCIAT automatically creates to store the results

are very large (324000 bytes in a 200 dimensional system) so be sure you have

enough free space in your directory to write such a large �le, otherwise the

results of all the computing may be lost.

If you run ASSOCIAT, �rst the F and G �les will be listed so you can see

if they are satisfactory. Below is a listing of a session using ASSOCIAT to

generate an association matrix. The data set is a set of ambiguous descriptors

used in the disambiguation demonstration. (This is the output seen when the

script �le lrndis is executed.)

ASSOCIAT program. October 28, 1994.

The program is reading the FFILE.

The dimensionality of the system is 200

The program is reading the GFILE.

F and G stimuli used.

F[1] : BaseballGameBat BallDiamd

G[1] : BaseballGameBat BallDiamd

F[2] : Vampire MythBat NiteDracu

G[2] : Vampire MythBat NiteDracu

F[3] : Animal LiveBat WingFlyng

G[3] : Animal LiveBat WingFlyng

F[4] : Poker GameBeerTablCards

G[4] : Poker GameBeerTablCards

6

F[5] : Tennis GameCortBallRackt

G[5] : Tennis GameCortBallRackt

F[6] : Dancing RichPrtyBallSocty

G[6] : Dancing RichPrtyBallSocty

F[7] : GeoShapeTwoDCrclSqreDiamd

G[7] : GeoShapeTwoDCrclSqreDiamd

F[8] : GeoModelTreDSphrBallTetra

G[8] : GeoModelTreDSphrBallTetra

F[9] : ExpJewelRichRubyOpalDiamd

G[9] : ExpJewelRichRubyOpalDiamd

Seed for RN generator : 123

Number of associations to learn : 250

Use CORRECTION procedure? Y or N: y

Use old Nfile as start? Y or N : n

Number of synapses : 100

Setup completed.

10 Nr: 8 Cosine: 5.16E-01

20 Nr: 5 Cosine: 9.01E-01

30 Nr: 4 Cosine: 9.48E-01

40 Nr: 1 Cosine: 9.60E-01

50 Nr: 2 Cosine: 9.25E-01

60 Nr: 6 Cosine: 9.47E-01

70 Nr: 5 Cosine: 9.87E-01

80 Nr: 2 Cosine: 9.74E-01

90 Nr: 4 Cosine: 9.97E-01

100 Nr: 3 Cosine: 9.70E-01

110 Nr: 9 Cosine: 9.91E-01

120 Nr: 5 Cosine: 9.95E-01

130 Nr: 4 Cosine: 9.98E-01

140 Nr: 7 Cosine: 9.89E-01

150 Nr: 4 Cosine: 9.97E-01

160 Nr: 8 Cosine: 9.96E-01

170 Nr: 5 Cosine: 9.96E-01

180 Nr: 8 Cosine: 9.99E-01

190 Nr: 4 Cosine: 9.99E-01

200 Nr: 4 Cosine: 9.99E-01

210 Nr: 5 Cosine: 9.99E-01

220 Nr: 8 Cosine: 9.99E-01

230 Nr: 7 Cosine: 1.00E+00

240 Nr: 1 Cosine: 9.99E-01

250 Nr: 2 Cosine: 9.99E-01

Accuracy of recall of input set.

7

1 Name: BaseballGameBat BallDiamd

Cosine: 9.99E-01 Length: 1.40E+01

2 Name: Vampire MythBat NiteDracu

Cosine: 1.00E+00 Length: 1.39E+01

3 Name: Animal LiveBat WingFlyng

Cosine: 9.99E-01 Length: 1.40E+01

4 Name: Poker GameBeerTablCards

Cosine: 1.00E+00 Length: 1.40E+01

5 Name: Tennis GameCortBallRackt

Cosine: 9.99E-01 Length: 1.39E+01

6 Name: Dancing RichPrtyBallSocty

Cosine: 1.00E+00 Length: 1.41E+01

7 Name: GeoShapeTwoDCrclSqreDiamd

Cosine: 1.00E+00 Length: 1.40E+01

8 Name: GeoModelTreDSphrBallTetra

Cosine: 9.99E-01 Length: 1.38E+01

9 Name: ExpJewelRichRubyOpalDiamd

Cosine: 9.98E-01 Length: 1.38E+01

Writing to neuron output file.

The Prompts are mostly self explanatory.

1. Seed starts o� the random number generator. Pairs of associations from

the set of stimulus pairs are presented randomly. A particular sequence can be

repeated if the same seed is used.

2. The number to be learned depends on the number of items in the stimulus

sets. If the Widrow-Ho� error correction procedure is used, about 30 presenta-

tions per pair is a good place to start. If the linear associator is used, only one

presentation of each pair is necessary.

3. Correction Procedure. If `Y' or `y', the Widrow-Ho� error correction

procedure will be used, otherwise, the linear associator without error correction

will be used.

4. Used Assigned N�le. If `Yes', a previously constructed .neu neuron �le

will be used as a starting point, otherwise all matrix elements start o� at zero.

You can teach an old matrix new tricks if you wish. If `No', then a new matrix

will be created.

5. Number of synapses is the number of non-zero synapses in the matrix.

The rest of the synapses are set identically to zero. Execution speed is a linear

function of number of synapses because of the way the programs are written

8

and the �les are constructed. This is because the matrices are not stored as

matrices but as lists of non-zero synaptic connections. Fewer synapses means

less computation time. Usually 50% connectivity is adequate for most systems

we have investigated up to now and seems to make the systems work better

than full connectivity, for reasons we now have some insight into. It takes a

while to set up the matrix, so expect a wait. If you set a connectivity of over

80%, you will get a warning message, telling you to expect a VERY long wait.

However, 100% connectivity is handled separately, and sets up very fast.

After the matrix is set up and the system starts learning, the program will

print out a progress report every 10 presentations. It will tell you the cumulative

number of trials, the stimulus pair presented that trial, and the cosine between

obtained and desired output vectors, so you can check on progress and make sure

the stimuli are being presented correctly. After learning is over, the program

will test how well the system learned. It will take each F in the F File in

turn as input, compute the output, and compare that output with the correct

association by computing the cosine between the actual and correct answers. A

cosine of 1.0 is perfect. The length of the vectors is also computed. The new

neuron �le will then be written to whatever �le was speci�ed on the command

line. Remember, in a 200 dimensional system, these �les are 324000 bytes long

so make sure you have enough free space in your account.

5 Using the Matrix

To test the behavior of a previously constructed matrix, run BSB.

You must read in the matrix and the stimulus sets you wish to test. This

is done automatically in BSB. The program will inform you of its progress and

whether or not it found the speci�ed �les. Success or failure in retrieving �les

will appear on the status line (i.e. the bottom line). This line will appear and

disappear so you have to watch carefully if you are interested. The status box

(the top �ve lines) will tell you how many stimuli are in the stimulus �les (0 if

the �les were not present) and whether neuron �les are present. (See Figure 1.)

If the program cannot �nd the required �les, it will tell you, but will not stop

the program. Some other input errors may abnormally terminate the program

and you will get an error message. If you exit the program abnormally, by

hitting <Ctrl>C, or if you manage to do something fatal to the input, expect

problems. Since your terminal has been reset to allow for the convenient display

format, strange things may have happpened to your display, like having all input

and output appear on one line. You can either write a small program to reset

your terminal to normal or run BSB again and simply type `e' to E)xit from the

program normally which will reset your VT-100 or terminal emulator. A useful

short program is listed below which will reset your terminal after an abnormal

exit:

#include <stdio.h>

void main(void) {

9

printf("%c%s",0x1b,"[1;24r"); /* Restore scrolling */

printf("%c%s",0x1b,"[f");

printf("%c%s",0x1b,"[2J"); /* Clear screen */

}

6 The Brain State in a Box Model

To use the Brain-State-in-a-Box (BSB) Model, type `B', for B)SB. There now

appear new prompt and command lines. There are a number of parameters of

the simulation which can be changed if necessary, but the system comes with

appropriate defaults for general use.

Figure 3 shows the appearance of the initial BSB screen.

Figure 3. Initial appearance of BSB Screen
||||||{

BSB>P)asses : 16 U)Limit: 1.3000 T)hreshold: 0.5000 Stim. #) : T 1

Mx: Synapses: 95 F)eedback: 0.7000 D)ecay: 0.6500

RESTART

TF BSB X)ecute C)hange L)ist R)estart V)als Q)uit >

||||||{

The variable x is the system state vector. The actual equation being used is

x(t + 1) = Decay * x(t) + Feedback * A x(t) + {f(0)}.

Decay is a decay parameter which measures the length of duration of the

`short term memory' of the system. (If there was no feedback, activity would

decay geometrically with this fraction. Feedback is a parameter multiplying the

feedback through the matrix.

If it is enabled, the term f(0) will add the initial state vector to the state

vector at every step. It could correspond to a continous input from an earlier

processing stage. This is related to what is called 'clamping' in the Boltzmann

machine literature and e�ectively holds non-zero input vector elements constant

so they cannot change in later iterations. This option is used in the DRUGS

simulation. It is enabled if `O' or `o' is typed from the command line.

The possible commands in the BSB system are:

10

C)hange. Change the state vectors in the F File, G File or T File. (see

earlier description of this part of the program).

D)ecay allows change of the decay constant in the above equation.

F)eedback allows change of the feedback constants in the above equation.

L)ist. List the vectors in the �les. If the display is in FG mode, the F File

and the G File will be listed. If the display is in T mode, the T File and the F

File will be listed. If more than 16 vectors are present, only sixteen at a time

will be shown. The part displayed can be moved forward or backward by typing

`F' or `B'. L)ist can be left by typing any character other than `F' or `B'.

M)ode. Changes the �les L)isted from F and G to T and F or vice versa.

O)riginal stimulus. This option adds the original stimulus vector to each

iteration. It is closely related to what is called `clamping' in the Boltzmann

machine literature since it e�ectively ensures that initial values never decay

away but are always present at high amplitude. A comment will appear on the

�fth line of the display if this option is in e�ect. If O) is typed again, the option

is cancelled and the original stimulus will not be added.

P)asses. The number of iterations to be performed before the command line

returns and you can cease iterations or change parameters. The default value

for P)asses is 16, the number of lines on the scrolling portion of the CRT screen.

Q)uit. Return to the highest command level.

R)estart the simulation with the initial stimulus. Otherwise typing X)ecute

will simply have the program continue what it was doing. The left part of the

fourth status line will say RESTART is the system will start from zero iterations.

Otherwise, the number of completed iterations will appear here.

T)hreshold allows change of the interpretation threshold. When the output

of the equation above is generated it is simply a 200 dimensional vector of

oating point numbers. In order to see what it is actually doing, this vector

is interpreted, i.e. turned back into an ASCII string. This is done by letting

every value greater than Threshold be give value +1 and every value less than -

Threshold be given value -1. Values nearer to zero than plus or minus threshold

are considered uninterpretable, and this particular byte is interpreted as the zero

character, ` '. Non-printing characters are represented as `#'. This thresholding

algorithm is only for the operator's convenience (i.e. it eliminates low amplitude

ASCII garbage from the interpretations and makes them easier to read) and it

has no e�ect on the values in the vector that are used for the next iteration. The

parity bit is not used in the interpretation and it is not checked for correctness.

U)limit. Allows change of the upper and lower limits of the box. Note upper

and lower limit need not be the same.

V)alues. Will display the values of the current state vector in terms of tenths

of upper or lower limit. If the value is equal to the upper or lower limit, +L or

-L will appear. A digit refers to tenths of the appropriate limit, i.e. +5 means

that the value of that element is between 0.5 and 0.6 of the upper limit.

X)ecute. Start iterating the current state vector for P)asses iterations. Will

continue from where it stopped if not R)eset.

#) allows choice of the stimulus number to be used for starting the iterations

if the system is R)eset.

11

6.1 Examples

Several examples of iterations using the matrices generated by a disambiguation

simulation are shown next. Figure 5 shows the pairs of associations. Figure 6

shows the results of the �rst 16 iterations and the next 16 iterations on `bat

ball'. Figure 7 shows the results of the �rst 16 and second 16 iterations on `bat

nite'. (The common word, `bat', is ambiguous and the context is able to choose

the correct meaning. More details are given in Anderson and Murphy, 1986.)

`Check' refers to the number of element values equal to the Upper or Lower

limit and is a rough measure of the length of the vector and how rapidly the

vector is changing. Positive feedback rapidly increases the number of saturated

elements.

Figure 5. Stimulus Set for Disambiguation Example
||||||{

BSB Neural Net Program. 10-94 B)SB. C)hange. E)xit. H)elp.

L)ist. M)ode. N)eurons. R)ead. S)ave. T)hreshold. W)rite.

Threshold: 0.5000 F File: 9 G File: 9 T File: 40

Synapses : 100 Display FG.

F[1]. BaseballGameBat BallDiamd G[1]. BaseballGameBat BallDiamd

F[2]. Vampire MythBat NiteDracu G[2]. Vampire MythBat NiteDracu

F[3]. Animal LiveBat WingFlyng G[3]. Animal LiveBat WingFlyng

F[4]. Poker GameBeerTablCards G[4]. Poker GameBeerTablCards

F[5]. Tennis GameCortBallRackt G[5]. Tennis GameCortBallRackt

F[6]. Dancing RichPrtyBallSocty G[6]. Dancing RichPrtyBallSocty

F[7]. GeoShapeTwoDCrclSqreDiamd G[7]. GeoShapeTwoDCrclSqreDiamd

F[8]. GeoModelTreDSphrBallTetra G[8]. GeoModelTreDSphrBallTetra

F[9]. ExpJewelRichRubyOpalDiamd G[9]. ExpJewelRichRubyOpalDiamd

C>

||||||{

Figure 6. Bat and Ball After 16 and 32 Iterations
||||||{

BSB>P)asses : 16 U)Limit: 1.3000 T)hreshold: 0.5000 Stim. #) : t 5

Mx: Synapses: 100 F)eedback: 0.2000 D)ecay: 0.9000

RESTART

1. ____________Bat Ball_____ Check: 0

2. ____________Bat Ball_____ Check: 0

3. ____________Bat Ball_____ Check: 0

4. ____________Bat Ball_____ Check: 1

5. ____________Bat Ball_____ Check: 5

6. ____________Bat Ball_____ Check: 10

7. _a__________Bat Ball_____ Check: 14

12

8. _a__________Bat Ball_____ Check: 16

9. _a__________Bat Ball_____ Check: 21

10. _a__________Bat Ball_____ Check: 25

11. _a_e________Bat Ball__a__ Check: 45

12. _a_e________Bat Ball__a__ Check: 56

13. _a_e_______eBat Ball__a__ Check: 67

14. _a_e_______eBat Ball__a__ Check: 105

15. Ba_e____G__eBat Ball__a__ Check: 108

16. Ba_e____G__eBat Ball__a__ Check: 116

TF BSB X)ecute C)hange L)ist R)estart V)als Q)uit >

||||||{
||||||{

BSB>P)asses : 16 U)Limit: 1.3000 T)hreshold: 0.5000 Stim. #) : t 5

Mx: Synapses: 100 F)eedback: 0.2000 D)ecay: 0.9000

It: 16

17. Ba_e____G__eBat Ball__a__ Check: 124

18. Ba_e____G__eBat Ball__a__ Check: 129

19. Ba_e____Ga_eBat Ball__a__ Check: 135

20. Ba_e____Ga_eBat Ball__a__ Check: 138

21. Ba_e____Ga_eBat BallD_a__ Check: 144

22. Ba_e__l_Ga_eBat BallDia__ Check: 149

23. Ba_e__l_Ga_eBat BallDia__ Check: 154

24. Ba_e__l_GameBat BallDia__ Check: 159

25. Base__llGameBat BallDiam_ Check: 161

26. Base__llGameBat BallDiam_ Check: 170

27. Baseb_llGameBat BallDiam_ Check: 174

28. BaseballGameBat BallDiamd Check: 179

29. BaseballGameBat BallDiamd Check: 181

30. BaseballGameBat BallDiamd Check: 187

31. BaseballGameBat BallDiamd Check: 192

32. BaseballGameBat BallDiamd Check: 197

TF BSB X)ecute C)hange L)ist R)estart V)als Q)uit >

||||||{

Figure 7 Bat and Nite after 16 and 32 Iterations
||||||{

BSB>P)asses : 16 U)Limit: 1.3000 T)hreshold: 0.5000 Stim. #) : t16

Mx: Synapses: 100 F)eedback: 0.2000 D)ecay: 0.9000

RESTART

1. ____________Bat Nite_____ Check: 0

2. ____________Bat Nite_____ Check: 0

3. ____________Bat Nite_____ Check: 0

4. ____________Bat Nite_____ Check: 0

13

5. ____________Bat Nite_____ Check: 0

6. ____________Bat Nite_____ Check: 1

7. ____________Bat Nite_____ Check: 4

8. ____________Bat Nite_____ Check: 10

9. ________M___Bat Ni_eD____ Check: 21

10. _a______M___Bat Ni_eD____ Check: 24

11. _a______M_t_Bat Ni_eD_a__ Check: 31

12. _a_____ M_t_Bat Ni_eD_a__ Check: 51

13. _a_____ M_t_Bat Ni_eD_a__ Check: 71

14. _a_____ M_t_Bat Ni_eD_a__ Check: 100

15. _a_____ M_t_Bat Ni_eD_a__ Check: 119

16. _a_____ M_t_Bat Ni_eD_a__ Check: 123

TF BSB X)ecute C)hange L)ist R)estart V)als Q)uit >

||||||{
||||||{

BSB>P)asses : 16 U)Limit: 1.3000 T)hreshold: 0.5000 Stim. #) : t16

Mx: Synapses: 100 F)eedback: 0.2000 D)ecay: 0.9000

It: 16

17. _a__i__ M_t_Bat NiteD_a__ Check: 127

18. _am_i_e Myt_Bat NiteD_a__ Check: 141

19. _am_i_e MythBat NiteD_ac_ Check: 147

20. _ampire MythBat NiteDracu Check: 158

21. Vampire MythBat NiteDracu Check: 166

22. Vampire MythBat NiteDracu Check: 169

23. Vampire MythBat NiteDracu Check: 171

24. Vampire MythBat NiteDracu Check: 173

25. Vampire MythBat NiteDracu Check: 180

26. Vampire MythBat NiteDracu Check: 193

27. Vampire MythBat NiteDracu Check: 199

28. Vampire MythBat NiteDracu Check: 200

>> Fully limited. Finished.

TF BSB X)ecute C)hange L)ist R)estart V)als Q)uit >

||||||{

7 Programming the System

The system as described is primarily interactive. However, it is often convenient,

when doing a systematic study of a system, to look at a great many test vec-

tors. This release of the programs does not allow non-interactive programming.

14

However, Unix script �les will allow you to do this conveniently from outside

the program. Script �les are �les of system and program commands that are

automatically executed when when the �le is `run'. The �rst line should be

#!/bin/sh

and `keyboard' input should be contained in a separate �le. Script �les should

be executable: run

chmod 755 <filename>

if necessary.

Suppose we had a set of say, �ve test stimuli, an autoassociative system, and

we wished to iterate every test stimulus 50 times and save the output of the

program for future study. The command line would be

./bsb testf.stm testg.stm testt.stm test.neu < test.input

Figure 8 shows the contents of the response �le test.input.

When BSB is run and the lines from test.input are taken as input to the

program. The input �les are L)isted. We want to use the B)sb model. In this

case, we want each P)ass to consist of 50 iterations and the O)riginal input

vector to be added after each iteration. Then test stimuli t1 through t5 are

successively X)ecuted, the system being R)eset after each new test stimulus.

Then B)sb is Q)uit and the program E)xited.

The output will be be printed on the screen, or can be redirected to a �le.

Figure 8
||||||{

l

m

l

b

p

50

o

#

t1

x

r

#

t2

x

r

#

t3

x

r

#

t4

x

r

#

t5

15

x

r

q

e

||||||{

8 Demonstration Command Files

Because it is sometimes convenient to be able to regenerate matrices or make

stimulus �les, we have provided command �les for three demonstrations.

We have already given examples of one demonstration, on lexical disam-

biguation. There are two other neural net demonstrations available. One is a

simple drug data base, which contains information about drugs, diseases and

microorganisms. There is also a demonstration of an associative system learning

Ohm's Law, which can `reason' about functional dependencies.

In all three cases, shell scripts are available that mean that BSB and ASSO-

CIAT do not need to be run directly from the command line. Each script calls

the appropriate program, supplying command line parameters and `keyboard'

input with the help of additional �le. There are three scripts required for each

demonstration:
Script Input Program Function

mkdis mkdis.input bsb Generate stimulus �les (*dis.stm)

lrndis lrndis.input associat Generate matrix (ndis.neu)

dis dis.input bsb Use above �les in demo

mkdrugs mkdrugs.input bsb Generate stimulus �les (*drugs.stm)

lrndrugs lrndrugs.input associat Generate matrix (ndrugs.neu)

drugs drugs.input bsb Use above �les in demo

mkohms mkohms.input bsb Generate stimulus �les (*ohms.stm)

lrnohms lrnohms.input associat Generate matrix (nohms.neu)

ohms ohms.input bsb Use above �les in demo

It is just necessary to type the script �le names (in the order shown above)

and watch the program run. However if you want to see in more detail (and you

will) what the programs are doing, then print or display the script and .input

�les for reference, and run the program manually.

It may take a while (10 or 20 minutes on a MicroVAX CPU, a few seconds

on an Alpha or Pentium machine) to make the connection matrices using AS-

SOCIAT. It may be of some value to have complete working `scripts' for some

common operations of BSB and ASSOCIAT. These operations are listed in the

command �les.

The details of the Ohms and Drugs simulations are described at length in

Chapter 16 in James A. Anderson, \An Introduction to Neural Networks", MIT

Press, Cambridge, MA. These programs are written so as to be easy to modify

for a particular application. Most of the simulations described in Chapters 15,

16, and 17 in the book were done with modi�ed versions of these programs.

16

9 File Naming and Maintenance

The program associat is self-contained in associat.c, however bsb is built from

ten modules:

bsb.c

bsb_int.c

bsb_list.c

bsb_make.c

bsb_num.c

bsb_proc.c

bsb_readf.c

bsb_readnf.c

bsb_vt100.c

bsb_writef.c

After making a change to bsb or associat (or to any of the programs from

the earlier chapters), the program will need to be rebuilt. The way to do this

is to use the `make' command. It may be invoked in two ways:

make

causes all programs to be updated, wherever necessary. Alternatively

make <progname>

will update just the speci�ed program. For example,

make bsb

will rebuild just bsb.

Rebuilding is a multistep process, potentially involving several versions of

several source code �les. The `make' command only performs such operations

as are necessary, and so rebuilding is rarely carried out from scratch.

However should you wish to rebuild all �les from scratch, the best way is to

type

touch *.c

make

The �rst updates the times and dates of all C �les, and the second invokes make.

10 Acknowledgement

This research was primarily supported by National Science Foundation Grants

BNS-82-14728 BNS-85-18675, and BNS-90-23283 to James Anderson, Depart-

ment of Cognitive and Linguistic Sciences, Brown University, Providence, RI,

02912. Please acknowledge these grants if you make use of these programs in

published material.

17

11 References

J.A. Anderson (1993), The BSB Model, Ed. M. Hassoun, Associative Neural

Networks, New York, NY: Oxford University Press

J.A. Anderson (1994), An Introduction to Neural Networks, Cambridge,

MA: MIT Press.

J.A. Anderson, Neural models for cognitive computation. IEEE Transac-

tions: Systems, Man, and Cybernetics. 1983, SMC-13, 799-815. (Reprinted in

V. Vemuri (Ed.), Arti�cial Neural Networks: Theoretical Concepts, Washing-

ton, DC: Computer Society Press of the IEEE, 1988.)

J.A.Anderson, Cognitive Capabilities of a Parallel System. In E. Bienen-

stock, F. Foglemann, and G. Weisbuch. (Eds.) Disordered Systems and Biolog-

ical Organization, Berlin: Springer, 1986.

J.A. Anderson and M. Mozer, Categorization and selective neurons. In:

G. Hinton and J. Anderson (Eds.), Parallel Models for Associative Memory.

Hillsdale, New Jersey: Erlbaum Associates, 1981. Revised Edition, 1988.

J.A. Anderson and G.L. Murphy, Psychological Concepts in a Parallel Sys-

tem. In J.D. Farmer, A. Lapedes, N. Packard, and B. Wendro�. (Eds.) Evo-

lution, Games, and Learning. New York: North Holland, 1986. (With Gregory

L. Murphy).

J.A. Anderson, J. Silverstein, S. Ritz, and R. Jones, Distinctive features,

categorical perception and probability learning: some applications of a neural

model. Psychological Review, 1978, 85, 597-603. (Reprinted in J.A. Anderson

and E. Rosenfeld (Eds.), Neurocomputing, Cambridge, MA: MIT Press, 1988).

18

