Lección 4.1: Ejercicio de un Factorial 2^3

Alfaomega

Alfaomega-UAQro-CIMAT

2016

Índice

- Presentación
- Motivación
- ldeas para planear y realizar Diseño factorial 2^3
- Diseño factorial 2^3 sin réplicas
 - Qué es un efecto?
 - Hipótesis estadísticas
 - Resumen efectos principales
 - Estudio de los efectos interacción
 - Hipótesis sobre el efecto de interacción?
 - Cálculo del efecto de interacción.
 - Resumen estadístico de la interacción.
 - Interpretación y conclusiones
 - Cierre de proyecto
- Análisis estadístico mediante paquetes estadísticos
- Comentarios adicionales
- Prácticas

1 Descripción de ideas y actividades que se realizarán en esta lección.

- Primero se mostrará una serie de ideas para motivar la posibilidad de
- Se describe la estrategia para aleatorizar las unidades experimentales
- Se presenta un caso de estudio para describir la planeación, realización
- En cada caso, se plantean una serie de preguntas para madurar en los
- La finalidad consiste en comprender la metodología estadística que se
- Mediante el uso del lenguaje de programación R, se estudiará la parte

3 / 61

- Descripción de ideas y actividades que se realizarán en esta lección.
 - Primero se mostrará una serie de ideas para motivar la posibilidad de planear un experimento.
 - Se describe la estrategia para aleatorizar las unidades experimentales UE en un diseño de tres factores con dos niveles: 2^k
 - Se presenta un caso de estudio para describir la planeación, realización y análisis de este tipo de diseño.
 - En cada caso, se plantean una serie de preguntas para madurar en los conceptos de estrategia experimental y análisis estadístico.
 - La finalidad consiste en comprender la metodología estadística que se aprendió desde los niveles básicos.
 - Mediante el uso del lenguaje de programación R, se estudiará la parte operativa con el fin de reforzar el conocimiento estadístico de los resultados. Lección 4.3
- ② El procedimiento del caso de estudio se puede repetir en actividades que realizamos en nuestros trabajos, estudios o investigaciones en medicina, biología, sicología entre otras áreas.
- Algunos ejercicios se resolveran usando paquetes estadísticos comerciales. Lecciones 4.2 y 4.4

- Descripción de ideas y actividades que se realizarán en esta lección.
 - Primero se mostrará una serie de ideas para motivar la posibilidad de planear un experimento.
 - Se describe la estrategia para aleatorizar las unidades experimentales UE en un diseño de tres factores con dos niveles: 2^k .
 - Se presenta un caso de estudio para describir la planeación, realización y análisis de este tipo de diseño.
 - En cada caso, se plantean una serie de preguntas para madurar en los conceptos de estrategia experimental y análisis estadístico.
 - La finalidad consiste en comprender la metodología estadística que se aprendió desde los niveles básicos.
 - Mediante el uso del lenguaje de programación R, se estudiará la parte operativa con el fin de reforzar el conocimiento estadístico de los resultados. Lección 4.3
- ② El procedimiento del caso de estudio se puede repetir en actividades que realizamos en nuestros trabajos, estudios o investigaciones en medicina, biología, sicología entre otras áreas.
- Algunos ejercicios se resolveran usando paquetes estadísticos comerciales. Lecciones 4.2 y 4.4

- 1 Descripción de ideas y actividades que se realizarán en esta lección.
 - Primero se mostrará una serie de ideas para motivar la posibilidad de planear un experimento.
 - Se describe la estrategia para aleatorizar las unidades experimentales UE en un diseño de tres factores con dos niveles: 2^k .
 - Se presenta un caso de estudio para describir la planeación, realización y análisis de este tipo de diseño.
 - En cada caso, se plantean una serie de preguntas para madurar en los
 - La finalidad consiste en comprender la metodología estadística que se
 - Mediante el uso del lenguaje de programación R, se estudiará la parte

- 1 Descripción de ideas y actividades que se realizarán en esta lección.
 - Primero se mostrará una serie de ideas para motivar la posibilidad de planear un experimento.
 - Se describe la estrategia para aleatorizar las unidades experimentales UE en un diseño de tres factores con dos niveles: 2^k .
 - Se presenta un caso de estudio para describir la planeación, realización y análisis de este tipo de diseño.
 - En cada caso, se plantean una serie de preguntas para madurar en los conceptos de estrategia experimental y análisis estadístico.
 - La finalidad consiste en comprender la metodología estadística que se
 - Mediante el uso del lenguaje de programación R, se estudiará la parte

- O Descripción de ideas y actividades que se realizarán en esta lección.
 - Primero se mostrará una serie de ideas para motivar la posibilidad de planear un experimento.
 - Se describe la estrategia para aleatorizar las unidades experimentales UE en un diseño de tres factores con dos niveles: 2^k .
 - Se presenta un caso de estudio para describir la planeación, realización y análisis de este tipo de diseño.
 - En cada caso, se plantean una serie de preguntas para madurar en los conceptos de estrategia experimental y análisis estadístico.
 - La finalidad consiste en comprender la metodología estadística que se aprendió desde los niveles básicos.
 - Mediante el uso del lenguaje de programación R, se estudiará la parte operativa con el fin de reforzar el conocimiento estadístico de los resultados. Lección 4.3
- ② El procedimiento del caso de estudio se puede repetir en actividades que realizamos en nuestros trabajos, estudios o investigaciones en medicina, biología, sicología entre otras áreas.
- 4 Algunos ejercicios se resolveran usando paquetes estadísticos comerciales. Lecciones 4.2 v 4.4

- Descripción de ideas y actividades que se realizarán en esta lección.
 - Primero se mostrará una serie de ideas para motivar la posibilidad de planear un experimento.
 - Se describe la estrategia para aleatorizar las unidades experimentales UE en un diseño de tres factores con dos niveles: 2^k .
 - Se presenta un caso de estudio para describir la planeación, realización y análisis de este tipo de diseño.
 - En cada caso, se plantean una serie de preguntas para madurar en los conceptos de estrategia experimental y análisis estadístico.
 - La finalidad consiste en comprender la metodología estadística que se aprendió desde los niveles básicos.
 - Mediante el uso del lenguaje de programación R, se estudiará la parte operativa con el fin de reforzar el conocimiento estadístico de los resultados. Lección 4.3

- Descripción de ideas y actividades que se realizarán en esta lección.
 - Primero se mostrará una serie de ideas para motivar la posibilidad de planear un experimento.
 - Se describe la estrategia para aleatorizar las unidades experimentales UE en un diseño de tres factores con dos niveles: 2^k .
 - Se presenta un caso de estudio para describir la planeación, realización y análisis de este tipo de diseño.
 - En cada caso, se plantean una serie de preguntas para madurar en los conceptos de estrategia experimental y análisis estadístico.
 - La finalidad consiste en comprender la metodología estadística que se aprendió desde los niveles básicos.
 - Mediante el uso del lenguaje de programación R, se estudiará la parte operativa con el fin de reforzar el conocimiento estadístico de los resultados. Lección 4.3
- 2 El procedimiento del caso de estudio se puede repetir en actividades que realizamos en nuestros trabajos, estudios o investigaciones en medicina, biología, sicología entre otras áreas.

- Descripción de ideas y actividades que se realizarán en esta lección.
 - Primero se mostrará una serie de ideas para motivar la posibilidad de planear un experimento.
 - Se describe la estrategia para aleatorizar las unidades experimentales UE en un diseño de tres factores con dos niveles: 2^k .
 - Se presenta un caso de estudio para describir la planeación, realización y análisis de este tipo de diseño.
 - En cada caso, se plantean una serie de preguntas para madurar en los conceptos de estrategia experimental y análisis estadístico.
 - La finalidad consiste en comprender la metodología estadística que se aprendió desde los niveles básicos.
 - Mediante el uso del lenguaje de programación R, se estudiará la parte operativa con el fin de reforzar el conocimiento estadístico de los resultados. Lección 4.3
- El procedimiento del caso de estudio se puede repetir en actividades que realizamos en nuestros trabajos, estudios o investigaciones en medicina, biología, sicología entre otras áreas.
- Algunos ejercicios se resolveran usando paquetes estadísticos comerciales. Lecciones 4.2 y 4.4

- Conocer diferentes conceptos estadísticos en la etapa de mejora en la elaboración de un proyecto mediante la experimentación.
- Comprender algunas estrategias de diseño de experimentos factoriales
- Utilizar el lenguaje de programación R para realizar la parte operativa
- Aprender a interpretar los resultados del análisis estadístico que
- Aplicar la metodología estadística para optimizar procesos en la

- Conocer diferentes conceptos estadísticos en la etapa de mejora en la elaboración de un proyecto mediante la experimentación.
- Comprender algunas estrategias de diseño de experimentos factoriales en la mejora de procesos.
- Utilizar el lenguaje de programación R para realizar la parte operativa
- Aprender a interpretar los resultados del análisis estadístico que
- Aplicar la metodología estadística para optimizar procesos en la

- Conocer diferentes conceptos estadísticos en la etapa de mejora en la elaboración de un proyecto mediante la experimentación.
- Comprender algunas estrategias de diseño de experimentos factoriales en la mejora de procesos.
- Utilizar el lenguaje de programación R para realizar la parte operativa del análisis estadístico. Lección 4.3
- Aprender a interpretar los resultados del análisis estadístico que
- Aplicar la metodología estadística para optimizar procesos en la

- Conocer diferentes conceptos estadísticos en la etapa de mejora en la elaboración de un proyecto mediante la experimentación.
- Comprender algunas estrategias de diseño de experimentos factoriales en la mejora de procesos.
- Utilizar el lenguaje de programación R para realizar la parte operativa del análisis estadístico. Lección 4.3
- Aprender a interpretar los resultados del análisis estadístico que generan diversos paquetes comerciales. Lección 4.4
- Aplicar la metodología estadística para optimizar procesos en la

- Conocer diferentes conceptos estadísticos en la etapa de mejora en la elaboración de un proyecto mediante la experimentación.
- Comprender algunas estrategias de diseño de experimentos factoriales en la mejora de procesos.
- Utilizar el lenguaje de programación R para realizar la parte operativa del análisis estadístico. Lección 4.3
- Aprender a interpretar los resultados del análisis estadístico que generan diversos paquetes comerciales. Lección 4.4
- Aplicar la metodología estadística para optimizar procesos en la industria Lección 9.1

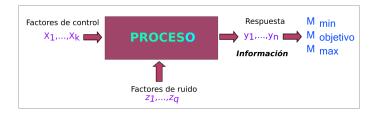
Buscar ahorro

- Ganar nuevos mercados
- Estudiar nuevos procedimientos en diversas áreas para encontrar
- Beneficio social
- Ganar preferencia

- Buscar ahorro
- Mejorar productos y servicios

- Estudiar nuevos procedimientos en diversas áreas para encontrar
- Beneficio social
- Ganar preferencia

- Buscar ahorro
- Mejorar productos y servicios
- Ganar nuevos mercados
- Estudiar nuevos procedimientos en diversas áreas para encontrar
- Beneficio social
- Ganar preferencia


- Buscar ahorro
- Mejorar productos y servicios
- Ganar nuevos mercados
- Incrementar ventas
- Estudiar nuevos procedimientos en diversas áreas para encontrar
- Beneficio social
- Ganar preferencia

- Buscar ahorro
- Mejorar productos y servicios
- Ganar nuevos mercados
- Incrementar ventas
- Estudiar nuevos procedimientos en diversas áreas para encontrar mejores soluciones
- Ganar preferencia

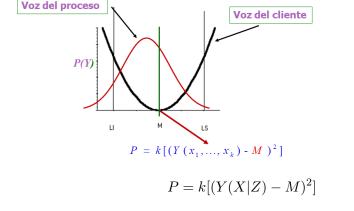
- Buscar ahorro
- Mejorar productos y servicios
- Ganar nuevos mercados
- Incrementar ventas
- Estudiar nuevos procedimientos en diversas áreas para encontrar mejores soluciones
- Beneficio social
- Ganar preferencia

- Buscar ahorro
- Mejorar productos y servicios
- Ganar nuevos mercados
- Incrementar ventas
- Estudiar nuevos procedimientos en diversas áreas para encontrar mejores soluciones
- Beneficio social
- Ganar preferencia

Características y metas de un proceso

- ¿Qué elementos intervienen para alcanar las metas M? Los factores de control (X) y ruido (Z)
- ¿Cómo se miden los avances? Mediante el estudio de la o las variables de respuesta.

¿Cómo se obtienen los valores M?


Mediante una planeación experimental.

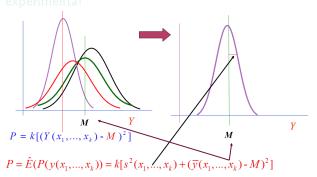
Por ejemplo, en un caso de siete factores se pueden realizar 8 pruebas experimentales con el fin de estudiar que factor tiene mayor relevancia en una investigación.

Tratamiento	x_1	x_2	x_3	x_4	x_5	x_6	x_7	
1	-1	-1	-1	1	1	1	-1	y_1
2	1	-1	-1	-1	-1	1	1	y_2
3	-1	1	-1	-1	1	-1	1	y_3
4	1	1	-1	1	-1	-1	-1	y_4
5	-1	-1	1	1	-1	-1	1	y_5
6	1	-1	1	-1	1	-1	-1	y_6
7	-1	1	1	-1	-1	1	-1	y_7
8	1	1	1	1	1	1	1	y_8

Detalles de estos diseños se muestran lecciones 5.1 y 5.2.

¿Cuál es el impacto en el proceso de alcanzar el valor de M?

$$X = (x_1, ..., x_k), Z = (z_1, ..., z_k)$$

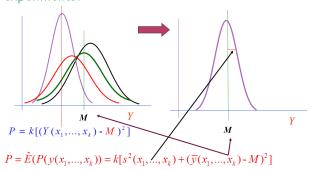

P Mide la pérdida ocasionada por no tener el valor M y varianza grande. La meta es que mediante un diseño de experimento factorial se alcance el valor M y se reduzca la varianza al rededor de M.

La meta final del experimento es alcanzar el valor M y reducir la varianza

Es decir:

¿Cómo alcanzar estas metas? Mediante la estimación de la media y varianza usando los resultas experimentales.

En las gráficas se señalan los valores de los parámetros. Un buen trabajo

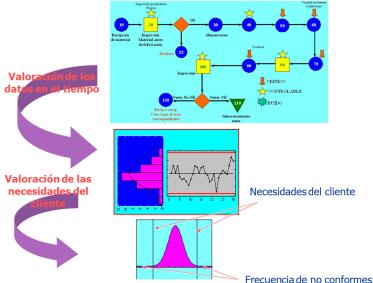

4 D > 4 D > 4 E > 4 E > E 900

La meta final del experimento es alcanzar el valor M y reducir la varianza

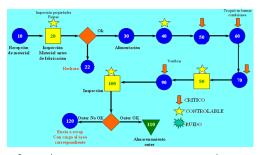
Es decir:

¿Cómo alcanzar estas metas? Mediante la estimación de la media y varianza usando los resultas experimentales.

En las gráficas se señalan los valores de los parámetros. Un buen trabajo experimental

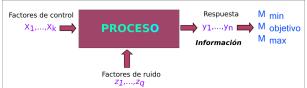

El diseño factorial ayuda a desarrollar, cambiar o mejorar un proceso

Las siguientes dos transparencias describen:


- El diagrama de flujo de un proceso o sistema y su relación con el desempeño.
- El diagama de flujo y el esquema general de un proceso.

Proponga un ejemplo de su área de interés que contenga estos elementos.

La variable de salida una característica de calidad



La variable de salida una característica de calidad

¿Qué elementos intervienen para alcanzar esas metas?

¿Cómo se miden los avances?

Características de calidad

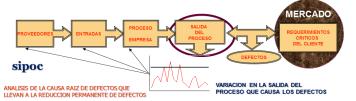
Variables de intéres en algunos procesos

Viscosidad Degradación

Dureza Fatiga

Tensión Vida de las lámparas Elasticidad Reacciones químicas Producción Número de defectos Color Tiempo entre fallas

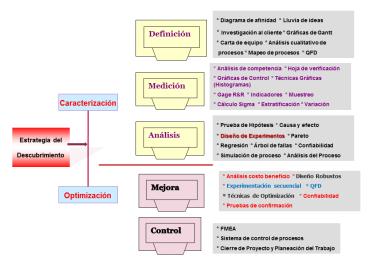
Costo Datos financieros


Actividad Vida de anaquel

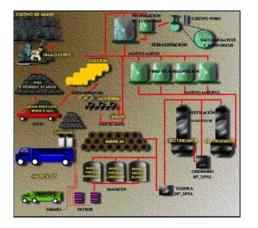
Beneficios del diseño de experimentos

Para una organización reflejados en el rendimiento del negocio:

- Buscar ahorro
- Mejorar productos y servicios
- Nuevos mercados
- Incrementar ventas
- Beneficio social
- Ganar preferencia


- Reducción de defectos
- Bajos costos
- Alta satisfacción del cliente
- Cortos tiempos de ciclo
- Procesos predecibles
- Mejora de tratamientos médicos

sipoc: relación entre proveedores, entradas, proceso, salida y clientes


Modelo para caracterizar y optimizar proceso

Guía para seguir el desarrollo del estudio o investigación de un tema. Ésta contiene cinco etapas y cada una de ellas es relevante. La medición, análisis y meiora son tratadas en particular en esta lección.

Descripción de la relación entre diferentes procesos

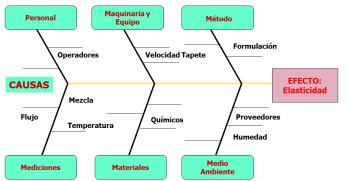
En la práctica un proceso interactúa con varios sistemas. En varias lecciones del libro se presentarán diferentes casos de interrelación entre sistemas, fenómenos o personas.

16 / 61

Caso de estudio: Elasticidad de un plástico

Requerimiento del cliente

Una empresa necesita de un plástico para su proceso. Le solicita a su proveedor que la elasticidad del plástico debe cumplir un rango específico de calidad.


El valor estándar de la elasticidad que determinan debe estar entre 65 y 70 unidades.

El planteamiento y el análisis estadístico de este ejemplo aplicado, es un ejercicio muestra de lo que se plantea en este tema. La solución se realiza paso a paso para que los usuarios comprendan los detalles conceptuales desde el planteamiento del diseño hasta el análisis estadístico y la interpretación.

Descripción del estudio de caso

Un proceso manufactura plásticos para la industria automotriz. La variable de calidad es la elasticidad del plástico y se requiere alcanzar un valor de especificación. los factores que intervienen en el proceso se muestran en el siguiente diagrama.

Diagrama Espina de Pescado

- Producto: Elaboración de una plástico en la industria automotriz.
- Variable de Respuesta: Elasticidad.

- Producto: Elaboración de una plástico en la industria automotriz.
- Objetivo: Producir una plástico con una elasticidad entre 65-70.
- Variable de Respuesta: Elasticidad.

	Valores
Temperatura (oC)	
Mezcla (g)	10, 20
Fluio (g/min)	

- Producto: Elaboración de una plástico en la industria automotriz.
- Objetivo: Producir una plástico con una elasticidad entre 65-70.
- Variable de Respuesta: Elasticidad.

	Valores
Temperatura (oC)	
Mezcla (g)	10, 20
Fluio (g/min)	

- Producto: Elaboración de una plástico en la industria automotriz.
- Objetivo: Producir una plástico con una elasticidad entre 65-70.
- Variable de Respuesta: Elasticidad.

	Valores
Temperatura (oC)	
Mezcla (g)	10, 20
Fluio (g/min)	

Diseño factorial con tres factores cada uno de ellos tiene dos valores (denominados niveles)

- Producto: Elaboración de una plástico en la industria automotriz.
- Objetivo: Producir una plástico con una elasticidad entre 65-70.
- Variable de Respuesta: Elasticidad.

Factores de Control:	Valores
Temperatura (oC)	50, 90
Mezcla (g)	10, 20
Flujo (g/min)	35, 50

Preguntas

- ¿Qué esquema experimental se utilizará?
- ¿Cómo se realiza el experimento?
- ¿ Qué factor tiene efecto sobre la elasticidad?

Diseño factorial con tres factores cada uno de ellos tiene dos valores (denominados niveles)

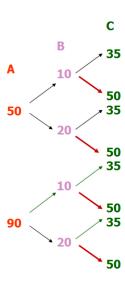
- Producto: Elaboración de una plástico en la industria automotriz.
- Objetivo: Producir una plástico con una elasticidad entre 65-70.
- Variable de Respuesta: Elasticidad.

Factores de Control:	Valores
Temperatura (oC)	50, 90
Mezcla (g)	10, 20
Fluio (g/min)	35, 50

Preguntas

- ¿Qué esquema experimental se utilizará?
- ¿Cómo se realiza el experimento?
- ¿ Qué factor tiene efecto sobre la elasticidad?

Diseño factorial con tres factores cada uno de ellos tiene dos valores (denominados niveles)


- Producto: Elaboración de una plástico en la industria automotriz.
- Objetivo: Producir una plástico con una elasticidad entre 65-70.
- Variable de Respuesta: Elasticidad.

Factores de Control:	Valores
Temperatura (oC)	50, 90
Mezcla (g)	10, 20
Flujo (g/min)	35, 50

Preguntas

- ¿Qué esquema experimental se utilizará?
- ¿Cómo se realiza el experimento?
- ¿ Qué factor tiene efecto sobre la elasticidad?

Esquema experimental: Diseño factorial 2^3

Factores de Control:	Valores		
	nivel 1	nivel 2	
A:Temperatura (oC)	50	90	
B:Mezcla (g)	10	20	
C:Flujo (g/min)	35	50	

¿Qué esquema experimental se utilizará?

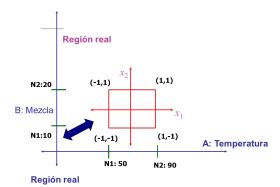
	Factores					
Prueba	Temperatura Mezcla Flujo					
	°C	g	g/min			
1	50	10	35			
2	90	10	35			
3	50	20	35			
4	90	20	35			
5	50	10	50			
6	90	10	50			
7	50	20	50			
8	90	20	50			

¿Cómo se realiza el experimento?: Se aleatoriza cada prueba

Resultados experimentales

Prueba		Resultados		
Prueba	Temperatura	de la prueba		
	°C	g	g/min	
1	50	10	35	64
2	90	10	35	88
3	50	20	35	68
4	90	20	35	76
5	50	10	50	38
6	90	10	50	74
7	50	20	50	38
8	90	20	50	56

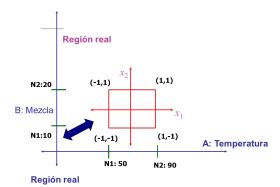
Después de completar todas las combinaciones posibles entre los niveles de los factores. Se aleatoriza cada uno de los ocho tratamientos


A continuación se realiza el experimento y se anotan las respuestas.

Observe que en este caso sólo se tiene una observación por tratamiento en tal situación nos referiremos a un diseño sin réplicas.

Transformación de la situación real al estándarizado

Transformación de la región experimental real Líneas azules. Región codificada líneas rojas.


$$x_1 = \frac{X_1 - \bar{X}}{0.5 * rango} rango = X_{max} - X_{min}$$

Transformación de la situación real al estándarizado

Transformación de la región experimental real Líneas azules. Región codificada líneas rojas.

$$x_1 = \frac{X_1 - \bar{X}}{0.5 * rango} rango = X_{max} - X_{min}$$

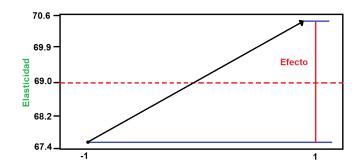
Diseño Factorial 2^3 , planeación, análisis y conclusión.

- Producto: Elaboración de una Plástico que se utilizará en la industria automotriz.
- Objetivo: Producir una Plástico con una Elasticidad entre 65-70.
- Variable de Respuesta Elasticidad.

```
Factores de Control:
                      Valores
                      50, 90
Temperatura (oC)
Mezcla (g)
                       10, 20
Flujo (g/min)
                      35, 50
```

Preguntas sobre la estrategia experimental y análisis

- ¿Qué esquema experimental se utilizará? Como se planteó un diseño 2^{3}
- ¿Cómo se realiza el experimento? Se aleatoriza cada uno de los 8 tratamientos


Las siguientes preguntas se irán contestando en las sucesivas trasparencias

- ¡Qué es un efecto?
- ¿Qué factor tiene efecto sobre la elasticidad?
- ¿Cómo se plantea en términos de hipótesis estadísticas?
- ¿Cómo estimar el efecto de un factor o efecto principal?
- ¿ Existe efecto de interacción entre los factores?
- ¿Cómo se plantea en términos de hipótesis estadísticas?

Qué es un efecto? ¿Qué factor tiene efecto sobre la Elasticidad?

El objetivo: Identificar que factores o interacciones ayudan en alcanzar el valor deseado en la Elasticidad.

¿Cómo se plantea el efecto de un factor en términos de hipótesis estadísticas?

El objetivo: Identificar que factores o interacciones ayudan en alcanzar el valor deseado en la Elasticidad.

Hipótesis de interés que se plantean en este proyecto. Por ejemplo para el factor C.

Hipótesis de trabajo:

Hipótesis (factor C): El flujo produce un resultado diferente en la Elasticidad

$$H_{C_0}: \mu(f_1) - \mu(f_2) = 0$$

$$H_{C_1}: \mu(f_1) - \mu(f_2) \neq 0$$

Si se rechaza la hipótesis nula se dice que hay efecto de del factor

¿Cómo se plantea el efecto de un factor en términos de hipótesis estadísticas?

El objetivo: Identificar que factores o interacciones ayudan en alcanzar el valor deseado en la Elasticidad.

Hipótesis de interés que se plantean en este proyecto. Por ejemplo para el factor C.

Hipótesis de trabajo:

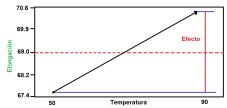
Hipótesis (factor C): El flujo produce un resultado diferente en la Elasticidad

$$H_{C_0}: \mu(f_1) - \mu(f_2) = 0$$

$$H_{C_1}: \mu(f_1) - \mu(f_2) \neq 0$$

Si se rechaza la hipótesis nula se dice que hay efecto de del factor Escriba las otras hipótesis

Hipótesis para los factores temperatura y mezcla.


$$H_{A_0}: \mu(t_1) - \mu(t_2) = 0$$
 $H_{A_1}: \mu(t_1) - \mu(t_2) \neq 0$
 $H_{B_0}: \mu(m_1) - \mu(m_2) = 0$ $H_{B_1}: \mu(m_1) - \mu(m_2) \neq 0$

Describa de manera gráfica el efecto de un factor

¿Cuál es el valor de la media que corresponde al punto en el nivel 50 de la temperatura ? Obténgalo

¿Cuál es el valor de la media que corresponde al punto en el nivel 90 de la temperatura?

El efecto es la diferencia, ¿cuál es esta? $\hat{\delta}_A = ar{y}_{2..} - ar{y}_{1..}$

◆ロト ◆個ト ◆重ト ◆重ト ■ りゅ○

¿Cómo estimar el efecto de un factor o efecto principal

Estimación de efectos de los factores: Estimación Factor A

Tra	Α	В	С	R			Tem		mezcla	I
1	50			64	Trat	elong	n1	n2		I
	30			00	1	64	64			Γ
2	90			88	2	88		88		t
3	50			68	3	68	68			Ī
4			_	76	4	76		76		Γ
	90			10	5	38	38			T
5	50			38	6	74		74		Ī
6	90			74	7	38	38			Ī
	90				8	56		56		Γ
7	50			38	Total		208	294		Ī
8	90			56	Obs		4	4		Ī
					Media		52	73.5		Ī

$$Efecto: \hat{\delta}_A = 73.5 - 52 = 21.5$$

Con estas operaciones se tiene calculado el efecto del factor A: temperatura. La cuestión es ver si este es significativo.

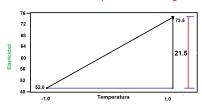
¿Cómo estimar el efecto de un factor o efecto principal

Estimación de efectos de los factores: Estimación Factor A

Tra	Α	В	С	R
1	50			64
2	90			88
3	50			68
4	90			76
5	50			38
6	90			74
7	50			38
8	90			56

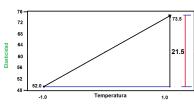
	Tem		mezcla		flujo	
elong	n1	n2				
64	64					
88		88				
68	68					
76		76				
38	38					
74		74				
38	38					
56		56				
	208	294				
	4	4				
	52	73.5				
	64 88 68 76 38 74 38	elong n1 64 64 88 68 68 76 38 38 74 38 38 56 208	elong n1 n2 64 64 88 88 68 76 76 76 38 38 38 74 74 74 38 56 56 56 208 294 4 4 4 4	elong n1 n2	elong n1 n2	elong 11 n2

$$Efecto: \hat{\delta}_A = 73.5 - 52 = 21.5$$


Con estas operaciones se tiene calculado el efecto del factor A: temperatura. La cuestión es ver si este es significativo.

¿Cuál es el procedimiento que se seguiría para ver esta significancia?

Estimación del efecto del factor A


Efecto del Factor A: Temperatura en la elongación

		Α	
Trat	elong	n1	n2
1	64	64	
2	88		88
3	68	68	
4	76		76
5	38	38	
6	74		74
7	38	38	
8	56		56
Total		208	294
Obs		4	4
Media		52	73.5

Estimación del efecto del factor A

Efecto del Factor A: Temperatura en la elongación

$$Efecto: \hat{\delta}_A = 73.5 - 52 = 21.5$$

		А	
Trat	elong	n1	n2
1	64	64	
2	88		88
3	68	68	
4	76		76
5	38	38	
6	74		74
7	38	38	
8	56		56
Total		208	294
Obs		4	4
Media		52	73.5

Estimación efectos de los factores B y C

Α	В	С	R
50	10	35	64
90	10	35	88
50	20	35	68
90	20	35	76
50	10	50	38
90	10	50	74
50	20	50	38
90	20	50	56
	50 90 50 90 50 90 50	50 10 90 10 50 20 90 20 50 10 90 10 50 20	50 10 35 90 10 35 50 20 35 90 20 35 50 10 50 90 10 50 50 20 50

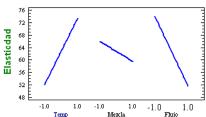
		tem		mezcla		flujo	
Trat	elong	n2	n2	n1	n2	n1	n2
1	64	64		64		64	
2	88		88	88		88	
3	68	68			68	68	
4	76		76		76	76	
5	38	38		38			38
6	74		74	74			74
7	38	38			38		38
8	56		56		56		56
Total		208	294	264	238	296	206
Obs		4	4	4	4	4	4
Media		52	73.5	66	59.5	74	51.5

Estimación efectos de los factores B y C

Tra	Α	В	С	R
1	50	10	35	64
2	90	10	35	88
3	50	20	35	68
4	90	20	35	76
5	50	10	50	38
6	90	10	50	74
7	50	20	50	38
8	90	20	50	56

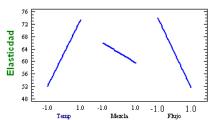
		tem		mezcla		flujo	
Trat	elong	n2	n2	n1	n2	n1	n2
1	64	64		64		64	
2	88		88	88		88	
3	68	68			68	68	
4	76		76		76	76	
5	38	38		38			38
6	74		74	74			74
7	38	38			38		38
8	56		56		56		56
Total		208	294	264	238	296	206
Obs		4	4	4	4	4	4
Media		52	73.5	66	59.5	74	51.5

$$\hat{\delta}_B = 59.5 - 66 = -6.5$$


$$\hat{\delta}_C = 51.5 - 74 = -22.5$$

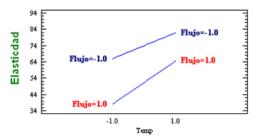
Resumen efectos principales

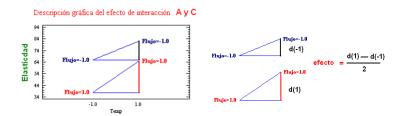
	Factor A	Factor B	Factor C
Nivel 1	52.0	66.0	74.0
Nivel 2	73.5	59.5	51.5
Efecto	21.5	-6.5	-22.5


Efecto de los Factores, A, B y C

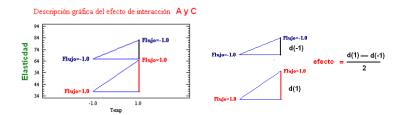
Resumen efectos principales

	Factor A	Factor B	Factor C
Nivel 1	52.0	66.0	74.0
Nivel 2	73.5	59.5	51.5
Efecto	21.5	-6.5	-22.5

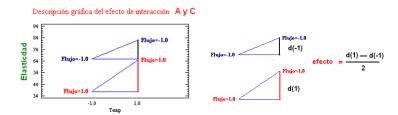

Efecto de los Factores, A, B y C



$$\hat{\delta}_A = 21.5 \ \hat{\delta}_B = -6.5 \ \hat{\delta}_C = -22.5$$


¿Cuándo se dice que existe efecto de interacción? ¿Qué significado tiene un efecto de interacción? ¿Existe efecto de interacción entre los factores? ¿Cómo se interpreta un efecto de interacción? ¿Cómo se plantea en términos de hipótesis estadísticas?

Descripción gráfica del efecto de interacción



La distancia denotada por la **línea negra** señala el efecto de la temperatura en el nivel 1 del flujo.

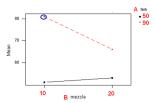
La distancia denotada por la **línea negra** señala el efecto de la temperatura en el nivel 1 del flujo.

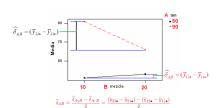
La distancia descrita por la línea roja muestra el efecto de la temperatura en el nivel 2 del fluio.

La distancia denotada por la **línea negra** señala el efecto de la temperatura en el nivel 1 del flujo.

La distancia descrita por la línea roja muestra el efecto de la temperatura en el nivel 2 del flujo.

Si el promedio de la diferencia de esas distancias es diferente de cero estadísticamente significativo, se dice que existe efecto de interacción


¿Cómo se interpreta un efecto de interacción?

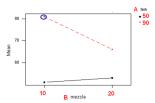

¿Cómo se plantea en términos de hipótesis estadísticas?

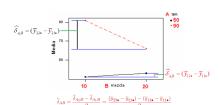
Interacción entre los factores temperatura y mezcla.

La diferencias en la Elasticidad en los niveles de la mezcla se ven afectadas al cambiar la temperatura.

Descripción gráfica

Cálculo de la interacción entre los factores A y B es


$$\widehat{\delta}_{AB} = \frac{\widehat{\delta}_{A_2B} - \widehat{\delta}_{A_1B}}{2} = \frac{(\overline{y}_{22\bullet} - \overline{y}_{21\bullet}) - (\overline{y}_{12\bullet} - \overline{y}_{11\bullet})}{2}$$


¿Cómo se interpreta un efecto de interacción? ¿Cómo se plantea en términos de hipótesis estadísticas?

Interacción entre los factores temperatura y mezcla.

La diferencias en la Elasticidad en los niveles de la mezcla se ven afectadas al cambiar la temperatura.

Descripción gráfica

Cálculo de la interacción entre los factores A y B es:

$$\widehat{\delta}_{AB} = \frac{\widehat{\delta}_{A_2B} - \widehat{\delta}_{A_1B}}{2} = \frac{(\overline{y}_{22\bullet} - \overline{y}_{21\bullet}) - (\overline{y}_{12\bullet} - \overline{y}_{11\bullet})}{2}$$

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 のQで

Hipótesis para las interacciones entre factores

La hipótesis de interacción entre los factores A y B es:

$$H_{oAB}: \delta_{AB} = 0$$

$$H_{1AB}:\delta_{AB}\neq 0$$

$$H_{oAC}: \delta_{AC} = 0$$

$$H_{1AC}:\delta_{AC}\neq 0$$

$$H_{oBC}: \delta_{BC} = 0$$

$$H_{1BC}:\delta_{BC}\neq 0$$

35 / 61

Hipótesis para las interacciones entre factores

La hipótesis de interacción entre los factores A y B es:

$$H_{oAB}: \delta_{AB} = 0$$

$$H_{1AB}:\delta_{AB}\neq 0$$

La hipótesis de interacción entre los factores A y C es:

$$H_{oAC}: \delta_{AC} = 0$$

$$H_{1AC}: \delta_{AC} \neq 0$$

$$H_{oBC}: \delta_{BC} = 0$$

$$H_{1BC}:\delta_{BC}\neq 0$$

35 / 61

Hipótesis para las interacciones entre factores

La hipótesis de interacción entre los factores A y B es:

$$H_{oAB}: \delta_{AB} = 0$$

$$H_{1AB}: \delta_{AB} \neq 0$$

La hipótesis de interacción entre los factores A y C es:

$$H_{oAC}: \delta_{AC} = 0$$

$$H_{1AC}:\delta_{AC}\neq 0$$

La hipótesis de interacción entre los factores B y C es:

$$H_{oBC}: \delta_{BC} = 0$$

$$H_{1BC}: \delta_{BC} \neq 0$$

35 / 61

Estimación del efectos de interacción AB.

Observe que los factores temperatura y mezcla tienen dos valores donde sus combinaciones coinciden, T1-T5 y T3-T7 para estimar A_1B_1

Т	Α	В	С	Y
1	50	10	35	64
2	90	10	35	88
3	50	20	35	68
4	90	20	35	76
5	50	10	50	38
6	90	10	50	74
7	50	20	50	38
8	90	20	50	56

Factor		В		Dif
		n_1	n_2	
А	n_1	51	53	2
	n_2	81	66	-15
Dif		30	13	-17

$$A_1B_1 = \frac{64+38}{2} = 51$$
 $A_1B_2 = \frac{68+38}{2} = 53$
 $A_2B_1 = \frac{88+74}{2} = 81$ $A_2B_2 = \frac{76+56}{2} = 66$

$$\hat{\delta}_{A_1B} = 53 - 51 = 2 \quad \hat{\delta}_{A_2B} = 66 - 81 = -15$$

Finalmente la interacción AB es:

$$\hat{\delta}_{AB} = \frac{\hat{\delta}_{A_2B} - \hat{\delta}_{A_1B}}{2} = \frac{-15 - 2}{2} = \frac{-17}{2} = -8.5$$

Estimación de los efectos de interacción AB y BA Gráficas

Factor		В		Dif
		n_1	n_2	
А	n_1	51	53	2
	n_2	81	66	-15
Dif		30	13	-17

Haga la gráfica de la interacción AB siguiendo los valores de la columna del nivel 1 del factor B, enseguida use los valores de la columna 2 de ese mismo factor.

De manera análoga trace la gráfica de la interacción BA.

Estimación de los efectos de interacción AC.

Т	Α	В	С	Y
1	50	10	35	64
2	90	10	35	88
3	50	20	35	68
4	90	20	35	76
5	50	10	50	38
6	90	10	50	74
7	50	20	50	38
8	90	20	50	56

Factor		С		Dif
		n_1	n_2	
Α	n_1	66	38	-28
	n_2	82	65	-17
Dif		30	21	11

$$A_1C_1 = \frac{66+68}{2} = 66$$
 $A_1C_2 = \frac{38+38}{2} = 38$
 $A_2C_1 = \frac{88+76}{2} = 82$ $A_2C_2 = \frac{74+56}{2} = 65$

$$\widehat{\delta}_{A_1C} = 38 - 66 = -28 \quad \widehat{\delta}_{A_2C} = 65 - 82 = -17$$

$$\widehat{\delta}_{AC} = \frac{\widehat{\delta}_{A_2C} - \widehat{\delta}_{A_1C}}{2} = \frac{-17 - (-28)}{2} = \frac{11}{2} = 5.5$$

Haga la gráfica de la interacción AC siguiendo los valores de la columna del nivel 1 del factor C, enseguida use los valores de la columna 2 de ese mismo factor. De manera análoga trace la gráfica de la interacción CA.

Estimación del efecto de interacción BC

Factor		С		Dif
		n_1	n_2	
В	n_1	76	56	-20
	n_2	72	47	-25
Dif		-4	-9	-5

Finalmente la interacción BC es:

$$\hat{\delta}_{BC} = \frac{\hat{\delta}_{B_2C} - \hat{\delta}_{B_1C}}{2} = \frac{-25 - (-20)}{2} = \frac{-5}{2} = -2.5$$

Resultados estadísticos

Efectos estimados para	elasticidad
Promedio	62.75
A:Temp	21.5
B:Mezcla	-6.5
C:Flujo	-22.5
AB	-8.5
AC	5.5
BC	-2.5

mental and a cartain and a control of cartain at

El siguiente paso es probar las hipótesis para saber si el efecto es estadísticamente significativo.

Análisis de la varianza

- El análisis de la varianza permite construir los estadísticos de prueba para verificar si los datos arrojados por el experimento apoyan las hipótesis nulas planteadas.
- Para ello se debe construir el cuadrado medio de los efectos y el cuadrado medio del error, recuerde que la variable que resulta de la razón entre estos cuadrados medios tiene una distribución de probabilidad F.
- La siguiente expresión permite calcular el cuadrado medio -CM- de cada factor y la interacción.

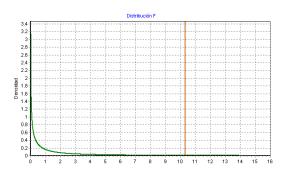
$$CM_{factor} = \frac{N\hat{\delta}_{factor}^2}{4},$$

donde $N=r2^k$, r réplicas

- En el caso particular de los diseños factoriales con dos niveles (2^k) tiene un grado de libertad, por lo que la suma de cuadrados SC es igual al cuadrado medio.
- Recuerde que la suma de cuadrados del error es la suma de las discrepancias de lo no explicado por el modelo al cuadrado.
- En particular en este caso, no alcanzan los grados de libertad para el error. Por lo que se confunde este error con el efecto de interacción triple.
- En las lecciones 4.2 y 4.3 se abordará el punto anterior con más detalle.

Análisis de la varianza

Fuente	SC	gl	CM	Valor F	Valor p
A:Temp	924.5	1	924.5	1849.00	0.0148
B:Mezcla	84.5	1	84.5	169.00	0.0489
C:Flujo	1012.5	1	1012.5	2025.00	0.0141
AB	144.5	1	144.5	289.00	0.0374
AC	60.5	1	60.5	121.00	0.0577
ВС	12.5	1	12.5	25.00	0.1257
error tota	10.5	1	0.5		
Total (corr)	2239.5	7			


iotai (corr.) 2239.5 /

$$R^2 = 99.9777\%$$
 $R^2(ajustada) = 99.8437\%$

Los factores significativos son A, B, C y AB. ¿Cómo se interpreta este resultado?

Distribución F

Valor de referencia para verificar H_o

Los tres factores y la interacción AB tienen efecto significativo.

El modelo estadístico de este experimento es:

$$Y = 62.75 + 10.75A - 3.25B - 11.25C - 4.25AB$$

Nota. Observe que los coeficientes en el modelo representan la mitad del efecto del factor. Sólo se ha escrito los efectos e interacciones significativas. ¿Cuáles son los valores reales del proceso?

El modelo estadístico de este experimento es:

$$Y = 62.75 + 10.75A - 3.25B - 11.25C - 4.25AB$$

Nota. Observe que los coeficientes en el modelo representan la mitad del efecto del factor. Sólo se ha escrito los efectos e interacciones significativas. ¿Cuáles son los valores reales del proceso?

Con estos resultados se cumplen las expectativas del cliente quién había propuesto una Elasticidad entre 65 y 70.

El modelo estadístico de este experimento es:

$$Y = 62.75 + 10.75A - 3.25B - 11.25C - 4.25AB$$

Nota. Observe que los coeficientes en el modelo representan la mitad del efecto del factor. Sólo se ha escrito los efectos e interacciones significativas. ¿Cuáles son los valores reales del proceso?

Con estos resultados se cumplen las expectativas del cliente quién había propuesto una Elasticidad entre 65 y 70.

Evalúe la importancia del modelo y su interpretación gráfica. Vea que además de esta solución propuesta puede proponer otros escenarios para encontrar otras soluciones que pueden resultar más económicas.

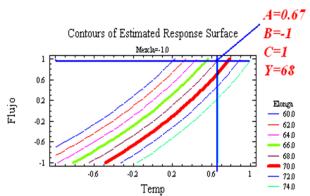
El modelo estadístico de este experimento es:

$$Y = 62.75 + 10.75A - 3.25B - 11.25C - 4.25AB$$

Nota. Observe que los coeficientes en el modelo representan la mitad del efecto del factor. Sólo se ha escrito los efectos e interacciones significativas.

¿Cuáles son los valores reales del proceso?

Con estos resultados se cumplen las expectativas del cliente quién había propuesto una Elasticidad entre 65 y 70.


Evalúe la importancia del modelo y su interpretación gráfica. Vea que además de esta solución propuesta puede proponer otros escenarios para encontrar otras soluciones que pueden resultar más económicas.

¿Cómo se aplica la etapa de control en este proyecto?

Interpretación y conclusiones Descripción gráfica

La gráfica de este modelo y la solución para una Elasticidad con un valor aproximado a 68.

En la lección 9.1, se explica con detalle esta gráfica

¿Cómo se sabe que realmente esta es una buen solución?

Se llevan a cabo pruebas confirmatorias, estas son entre 5 y 20. Lo ideal es asignar ese número de Plásticoes al equipo para hacer las pruebas. En principio esto puede representar un costo importante, pero al ganar un cliente este se recupera

$$H - 0: \mu = 68 \ H_1: \mu \neq 68$$

¿Cómo se sabe que realmente esta es una buen solución?

Se llevan a cabo pruebas confirmatorias, estas son entre 5 y 20. Lo ideal es asignar ese número de Plásticoes al equipo para hacer las pruebas. En principio esto puede representar un costo importante, pero al ganar un cliente este se recupera

Se realizaron 8 pruebas adicionales con los resultados de la Elasticidad son: 67.5, 67, 68, 68, 68, 69, 68, 68. La media de estos valores es: 67.9 y una desviación estándar de 0.056. El planteamiento estadístico es:

$$H - 0: \mu = 68 \ H_1: \mu \neq 68$$

¿Cómo se sabe que realmente esta es una buen solución?

Se llevan a cabo pruebas confirmatorias, estas son entre 5 y 20. Lo ideal es asignar ese número de Plásticoes al equipo para hacer las pruebas. En principio esto puede representar un costo importante, pero al ganar un cliente este se recupera

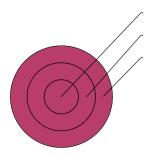
Se realizaron 8 pruebas adicionales con los resultados de la Elasticidad son: 67.5, 67, 68, 68, 68, 69, 68, 68. La media de estos valores es: 67.9 y una desviación estándar de 0.056. El planteamiento estadístico es:

$$H - 0: \mu = 68 \ H_1: \mu \neq 68$$

Se hace la prueba de hipótesis estadística y se tiene un intervalo del 95% confianza:

¿Cómo se sabe que realmente esta es una buen solución?

Se llevan a cabo pruebas confirmatorias, estas son entre 5 y 20. Lo ideal es asignar ese número de Plásticoes al equipo para hacer las pruebas. En principio esto puede representar un costo importante, pero al ganar un cliente este se recupera

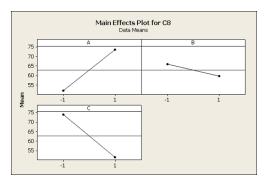

Se realizaron 8 pruebas adicionales con los resultados de la Elasticidad son: 67.5, 67, 68, 68, 68, 69, 68, 68. La media de estos valores es: 67.9 y una desviación estándar de 0.056. El planteamiento estadístico es:

$$H - 0: \mu = 68 \ H_1: \mu \neq 68$$

Se hace la prueba de hipótesis estadística y se tiene un intervalo del 95% confianza:

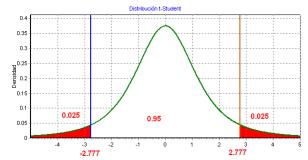
Cómo el 68 esta contenido en ese intervalo no se rechaza la hipótesis nula y se concluye que el trabajo experimental fue exitoso en este caso. Es importante observar de la gráfica que existen otras soluciones, las cuales ofrecen resultados satisfactorio. Siga este análisis a través del paquete y anote sus observaciones.

Cierre de proyecto

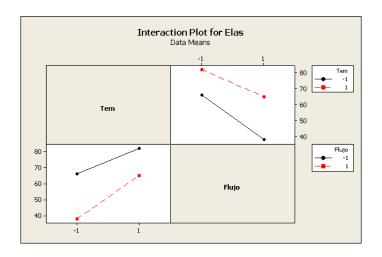


Cálculos en minitab

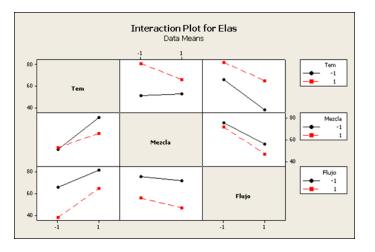
Resumen


Nota: Aquí se presenta un breve resumen de los resultados estadísticos que se obtienen usando minitab. En la leccion 4.5 se pondrán más detalle sobre el empleo de paquetes estadísticos

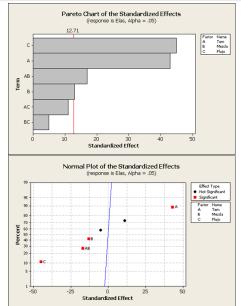
Term	Effect	Coef	SE Coef	Т	Р
Constant	62.75	2.610	24.04	0.000	
Tem	21.50	10.75	2.610	4.12	0.015
Mezcla	-6.50	-3.25	2.610	-1.25	0.281
Flujo	-22.50	- 11.25	2.610	-4.31	0.013


Análisis estadístico para evaluar los resultados del experimento

Term	Effect	Coef	SE Coef	Т	Р
Constant	62.75	2.610	24.04	0.000	
Tem	21.50	10.75	2.610	4.12	0.015
Mezcla	-6.50	-3.25	2.610	-1.25	0.281
Flujo	-22.50	-11.25	2.610	-4.31	0.013



Minitab:


Efecto de interacción entre los factores A y C o C y A

Resumen gráfico

Análisis gráfico del efecto de los factores

Comentarios adicionales

Así si decide llevar a cabo un experimento con tres factores y dos niveles, el diseño experimental se muestra en la tabla de abajo. Vea que éste se representa con sus valores codificados

Comentemos durante la sesión las ventajas de este esquema. Su relación con los problemas reales.

A continuación se realiza una práctica donde se aplique este esquema. Siga las instrucciones que se presentan en la sesión.

Tratamientos codificados

Tra	1	Α	В	С	AB	AC	ВС	ABC	Υ
1	1	-1	-1	-1	1	1	1	-1	Y ₁₁₁
2	1	1	-1	-1	-1	-1	1	1	y ₂₁₁
3	1	-1	1	-1	-1	1	-1	1	y ₁₂₁
4	1	1	1	-1	1	-1	-1	-1	y ₂₂₁
5	1	-1	-1	1	1	-1	-1	1	y ₁₁₂
6	1	1	-1	1	-1	1	-1	-1	y ₂₁₂
7	1	-1	1	1	-1	-1	1	-1	y ₁₂₂
8	1	1	1	1	1	1	1	1	y ₂₂₂

Estimación de efectos

Tra	1	Α	В	С	AB	AC	ВС	ABC	Υ
1	1	-1	-1	-1	1	1	1	-1	Y ₁₁₁
2	1	1	-1	-1	-1	-1	1	1	y ₂₁₁
3	1	-1	1	-1	-1	1	-1	1	y ₁₂₁
4	1	1	1	-1	1	-1	-1	-1	y ₂₂₁
5	1	-1	-1	1	1	-1	-1	1	y ₁₁₂
6	1	1	-1	1	-1	1	-1	-1	y ₂₁₂
7	1	-1	1	1	-1	-1	1	-1	y ₁₂₂
8	1	1	1	1	1	1	1	1	y ₂₂₂

$$\hat{\delta}_{BC} = \frac{y_{111} + y_{211} - y_{121} - y_{221} - y_{112} - y_{212} + y_{122} + y_{222}}{4}$$

Selección de los niveles de un factor

Seleccionar el número de niveles depende del objetivo que se desee alcanzar.

- En etapas iniciales de un proyecto por lo general se tienen muchos factores por lo que conviene emplear diseños con factores en dos niveles
- En experimentación secuencial es conveniente usar factores con dos niveles.
- Si se desea conocer la existencia de un efecto de curvatura entonces los diseños en tres niveles son apropiados.
- En procesos de optimización existen diseños eficientes y el número de niveles varia entre dos y cinco niveles.

Nota. Usar de entrada diseños con tres niveles puede resultar costoso.

Rango de valores de un factor

Establecer el rango entre niveles de los factores cuantitativos esta en función de los objetivos que se deseen obtener.

- Si se experimenta en un proceso en función el rango deber ser pequeño para no causar daños en la producción.
- Si se quiere un cambio potencial en la variable de respuesta el rango debe ser bastante extenso.
- Sin embargo, si el rango es mucho más extenso que las especificaciones del cliente, los resultados del diseño no tendrá ningún significado práctico.

Los expertos de los procesos que se estudien pueden ayudar a determinar los mejores niveles cualitativos o cuantitativos, especialmente si son varios niveles.

Prácticas

La solución de la práctica 1 se presentará en lección 4.3 aplicando R y otros

paquetes estadísticos. Se deja que el usuario la resuelva y luego verifique el

resultado.

Ejemplo de un diseño 2^3 Repaso

En una investigación para disminuir el efecto de la contaminación, se elaboró un combustible sintético, los ingenieros del proceso realizaron un experimento controlando tres factores en dos niveles A: extracto de un semilla (5% y 10%), factor B: concentración de un etileno (15% y 25%), y el factor C la temperatura de destilación. Los niveles de emisión (respuesta), dos réplicas y el esquema de tratamientos se muestran a continuación:

A +	В	С
+	-	-
-	-	-
+	+	-
-	+	-
+	-	+
-	-	+ + +
+	+	
-	+	+

Trat	Y ₁	Y ₂	Y ₃		S
1	32	24	23	26.33	4.93
2	19	21	25	21.67	3.06
3	37	39	32	36.00	3.61
4	44	41	38	41.00	3.00
5	27	28	25	26.67	1.53
6	50	54	47	50.33	3.51
7	24	20	18	20.67	3.06
8	51	45	57	51.00	6.00

- Supongan que a ustedes les encomiendan realizar este experimento indique los detalles de como lo realizaran.
- Haga la gráfica del efecto de interacción de AB. (Explique paso a paso
- Estime el efecto de interacción y el cuadrado medio de AB.
- Estime los efectos de los tres factores y sus respectivas interacciones.
- Bosqueje un diagrama de Pareto e indique de manera intuitiva los
- Estime la varianza del proceso, (considere el resultado del primer
- Indique, cuál de los tres factores tiene efecto en la
- Mediante una prueba de hipótesis, diga si es significativo el efecto de

- Supongan que a ustedes les encomiendan realizar este experimento indique los detalles de como lo realizaran.
- Haga la gráfica del efecto de interacción de AB. (Explique paso a paso como la elabora)
- Estime el efecto de interacción y el cuadrado medio de AB.
- Estime los efectos de los tres factores y sus respectivas interacciones.
- Bosqueje un diagrama de Pareto e indique de manera intuitiva los
- Estime la varianza del proceso, (considere el resultado del primer
- Indique, cuál de los tres factores tiene efecto en la
- Mediante una prueba de hipótesis, diga si es significativo el efecto de

- Supongan que a ustedes les encomiendan realizar este experimento indique los detalles de como lo realizaran.
- Haga la gráfica del efecto de interacción de AB. (Explique paso a paso como la elabora)
- Estime el efecto de interacción y el cuadrado medio de AB.
- Estime los efectos de los tres factores y sus respectivas interacciones.
- Bosqueje un diagrama de Pareto e indique de manera intuitiva los efectos que considera significativos.
- Estime la varianza del proceso, (considere el resultado del primer experimento y las dos réplicas).
- Indique, cuál de los tres factores tiene efecto en la variabilidad-varianza.
- Mediante una prueba de hipótesis, diga si es significativo el efecto de interacción AB

- Supongan que a ustedes les encomiendan realizar este experimento indique los detalles de como lo realizaran.
- Haga la gráfica del efecto de interacción de AB. (Explique paso a paso como la elabora)
- Estime el efecto de interacción y el cuadrado medio de AB.
- Estime los efectos de los tres factores y sus respectivas interacciones.
- Bosqueje un diagrama de Pareto e indique de manera intuitiva los
- Estime la varianza del proceso, (considere el resultado del primer
- Indique, cuál de los tres factores tiene efecto en la
- Mediante una prueba de hipótesis, diga si es significativo el efecto de

- Supongan que a ustedes les encomiendan realizar este experimento indique los detalles de como lo realizaran.
- Haga la gráfica del efecto de interacción de AB. (Explique paso a paso como la elabora)
- Estime el efecto de interacción y el cuadrado medio de AB.
- Estime los efectos de los tres factores y sus respectivas interacciones.
- Bosqueje un diagrama de Pareto e indique de manera intuitiva los efectos que considera significativos.
- Estime la varianza del proceso, (considere el resultado del primer
- Indique, cuál de los tres factores tiene efecto en la
- Mediante una prueba de hipótesis, diga si es significativo el efecto de

- Supongan que a ustedes les encomiendan realizar este experimento indique los detalles de como lo realizaran.
 Haga la gráfica del efecto de interacción de AB. (Explique pase a pase
- Haga la gráfica del efecto de interacción de AB. (Explique paso a paso como la elabora)
- Estime el efecto de interacción y el cuadrado medio de AB.
- Estime los efectos de los tres factores y sus respectivas interacciones.
- Bosqueje un diagrama de Pareto e indique de manera intuitiva los efectos que considera significativos.
- Estime la varianza del proceso, (considere el resultado del primer experimento y las dos réplicas).
- Indique, cuál de los tres factores tiene efecto en la variabilidad-varianza.
- Mediante una prueba de hipótesis, diga si es significativo el efecto de interacción AB.

- Supongan que a ustedes les encomiendan realizar este experimento indique los detalles de como lo realizaran.
- Haga la gráfica del efecto de interacción de AB. (Explique paso a paso como la elabora)
- Estime el efecto de interacción y el cuadrado medio de AB.
- Estime los efectos de los tres factores y sus respectivas interacciones.
- Bosqueje un diagrama de Pareto e indique de manera intuitiva los efectos que considera significativos.
- Estime la varianza del proceso, (considere el resultado del primer experimento y las dos réplicas).
- Indique, cuál de los tres factores tiene efecto en la variabilidad-varianza.
- Mediante una prueba de hipótesis, diga si es significativo el efecto de interacción AB.

- Supongan que a ustedes les encomiendan realizar este experimento indique los detalles de como lo realizaran.
- Haga la gráfica del efecto de interacción de AB. (Explique paso a paso como la elabora)
- Estime el efecto de interacción y el cuadrado medio de AB.
- Estime los efectos de los tres factores y sus respectivas interacciones.
- Bosqueje un diagrama de Pareto e indique de manera intuitiva los efectos que considera significativos.
- Estime la varianza del proceso, (considere el resultado del primer experimento y las dos réplicas).
- Indique, cuál de los tres factores tiene efecto en la variabilidad-varianza.
- Mediante una prueba de hipótesis, diga si es significativo el efecto de interacción AB.

60 / 61

- Le dicen que sólo se pueden llevar a cabo cuatro experimentos diarios. Proponga la estrategia para llevar a cabo el experimento incluyendo las réplicas.
- Escriba el modelo para la media, indique en que valores se tiene un
- Establezca los valores reales del proceso donde haya menor
- Bosqueje un diagrama para la varianza, señale los efectos que pueden
- Construya el modelo para la varianza, diga donde se tiene la menor
- Diga los valores reales del proceso donde se tenga la menor variabilidad
- Sobre la inferencia de parámetros experimentales:

- Le dicen que sólo se pueden llevar a cabo cuatro experimentos diarios. Proponga la estrategia para llevar a cabo el experimento incluyendo las réplicas.
- Escriba el modelo para la media, indigue en que valores se tiene un menor efecto de contaminación.
- Establezca los valores reales del proceso donde haya menor
- Bosqueje un diagrama para la varianza, señale los efectos que pueden
- Construya el modelo para la varianza, diga donde se tiene la menor
- Diga los valores reales del proceso donde se tenga la menor variabilidad
- Sobre la inferencia de parámetros experimentales:

- Le dicen que sólo se pueden llevar a cabo cuatro experimentos diarios.
 Proponga la estrategia para llevar a cabo el experimento incluyendo las réplicas.
- Escriba el modelo para la media, indique en que valores se tiene un menor efecto de contaminación.
- Establezca los valores reales del proceso donde haya menor contaminación.
- Bosqueje un diagrama para la varianza, señale los efectos que pueden ser significativos.
- Construya el modelo para la varianza, diga donde se tiene la menor variabilidad.
- Diga los valores reales del proceso donde se tenga la menor variabilidad
- Sobre la inferencia de parámetros experimentales:

- Le dicen que sólo se pueden llevar a cabo cuatro experimentos diarios.
 Proponga la estrategia para llevar a cabo el experimento incluyendo las réplicas.
- Escriba el modelo para la media, indique en que valores se tiene un menor efecto de contaminación.
- Establezca los valores reales del proceso donde haya menor contaminación.
- Bosqueje un diagrama para la varianza, señale los efectos que pueden ser significativos.
- Construya el modelo para la varianza, diga donde se tiene la menor variabilidad.
- Diga los valores reales del proceso donde se tenga la menor variabilidad
- Sobre la inferencia de parámetros experimentales:

- Le dicen que sólo se pueden llevar a cabo cuatro experimentos diarios.
 Proponga la estrategia para llevar a cabo el experimento incluyendo las réplicas.
- Escriba el modelo para la media, indique en que valores se tiene un menor efecto de contaminación.
- Establezca los valores reales del proceso donde haya menor contaminación.
- Bosqueje un diagrama para la varianza, señale los efectos que pueden ser significativos.
- Construya el modelo para la varianza, diga donde se tiene la menor variabilidad.
- Diga los valores reales del proceso donde se tenga la menor variabilidad
- Sobre la inferencia de parámetros experimentales:

- Le dicen que sólo se pueden llevar a cabo cuatro experimentos diarios. Proponga la estrategia para llevar a cabo el experimento incluyendo las réplicas.
- Escriba el modelo para la media, indigue en que valores se tiene un menor efecto de contaminación.
- Establezca los valores reales del proceso donde haya menor contaminación.
- Bosqueje un diagrama para la varianza, señale los efectos que pueden ser significativos.
- Construya el modelo para la varianza, diga donde se tiene la menor variabilidad.
- Diga los valores reales del proceso donde se tenga la menor variabilidad
- Sobre la inferencia de parámetros experimentales:

- Le dicen que sólo se pueden llevar a cabo cuatro experimentos diarios. Proponga la estrategia para llevar a cabo el experimento incluyendo las réplicas.
- Escriba el modelo para la media, indigue en que valores se tiene un menor efecto de contaminación.
- Establezca los valores reales del proceso donde haya menor contaminación.
- Bosqueje un diagrama para la varianza, señale los efectos que pueden ser significativos
- Construya el modelo para la varianza, diga donde se tiene la menor variabilidad.
- Diga los valores reales del proceso donde se tenga la menor variabilidad
- Sobre la inferencia de parámetros experimentales:

